distilhubert-finetuned-gtzan
This model is a fine-tuned version of ntu-spml/distilhubert on the GTZAN dataset. It achieves the following results on the evaluation set:
- Loss: 0.5583
- Accuracy: 0.84
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 11
- eval_batch_size: 11
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 16
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
2.1691 | 1.0 | 82 | 2.0890 | 0.44 |
1.6372 | 2.0 | 164 | 1.5252 | 0.57 |
1.348 | 3.0 | 246 | 1.1441 | 0.72 |
0.8319 | 4.0 | 328 | 0.9642 | 0.74 |
0.5931 | 5.0 | 410 | 0.6850 | 0.82 |
0.5049 | 6.0 | 492 | 0.5984 | 0.83 |
0.3853 | 7.0 | 574 | 0.5737 | 0.81 |
0.217 | 8.0 | 656 | 0.6157 | 0.82 |
0.2158 | 9.0 | 738 | 0.4505 | 0.89 |
0.0759 | 10.0 | 820 | 0.5020 | 0.87 |
0.0412 | 11.0 | 902 | 0.5438 | 0.83 |
0.0325 | 12.0 | 984 | 0.5729 | 0.83 |
0.0221 | 13.0 | 1066 | 0.5432 | 0.83 |
0.0154 | 14.0 | 1148 | 0.5868 | 0.83 |
0.015 | 15.0 | 1230 | 0.5330 | 0.86 |
0.0138 | 16.0 | 1312 | 0.5583 | 0.84 |
Framework versions
- Transformers 4.53.0.dev0
- Pytorch 2.6.0+cu124
- Datasets 3.6.0
- Tokenizers 0.21.1
- Downloads last month
- 740
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
🙋
Ask for provider support
Model tree for ErikRAx/distilhubert-finetuned-gtzan
Base model
ntu-spml/distilhubert