Walia-LLM
Collection
https://aclanthology.org/2024.findings-emnlp.25/
β’
6 items
β’
Updated
The model was trained on a custom instruction dataset derived from:
See EthioNLP/walia-amharic-instructions for the dataset used.
This model is intended for:
from transformers import AutoTokenizer, AutoModelForCausalLM
model = AutoModelForCausalLM.from_pretrained("EthioNLP/Amharic-LLAMA-all-data")
tokenizer = AutoTokenizer.from_pretrained("EthioNLP/Amharic-LLAMA-all-data")
prompt = "α΅α α ααα ααα αααα« α α
αα₯α’"
inputs = tokenizer(prompt, return_tensors="pt")
outputs = model.generate(**inputs, max_new_tokens=100)
print(tokenizer.decode(outputs[0], skip_special_tokens=True))
@inproceedings{azime-etal-2024-walia,
title = "Walia-{LLM}: Enhancing {A}mharic-{LL}a{MA} by Integrating Task-Specific and Generative Datasets",
author = "Azime, Israel Abebe and Tonja, Atnafu Lambebo and Belay, Tadesse Destaw and Fuge, Mitiku Yohannes and Wassie, Aman Kassahun and Jada, Eyasu Shiferaw and Chanie, Yonas and Sewunetie, Walelign Tewabe and Yimam, Seid Muhie",
editor = "Al-Onaizan, Yaser and Bansal, Mohit and Chen, Yun-Nung",
booktitle = "Findings of the Association for Computational Linguistics: EMNLP 2024",
month = nov,
year = "2024",
address = "Miami, Florida, USA",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2024.findings-emnlp.25/",
doi = "10.18653/v1/2024.findings-emnlp.25",
pages = "432--444"
}