File size: 19,149 Bytes
9571494
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
---
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:77455
- loss:ContrastiveLoss
base_model: deepvk/USER-bge-m3
widget:
- source_sentence: Исследование антигена хеликобактера (Helicobacter pylori)
  sentences:
  - 'Токсоплазма (Toxoplasma gondii): Антитела: IgG, (количественно). Метод: ИФА'
  - 'Хеликобактер пилори (Helicobacter pylori): Антитела: IgG, (количественно). Метод:
    ИФА'
  - УЗИ молочных желез с эластографией
- source_sentence: Антитела к ХГЧ ( IgM и IgG)
  sentences:
  - Общий анализ мочи с микроскопией
  - Антитела к тканевой трансглутаминазе, IgG
  - Прием (осмотр, консультация) врача-онколога в клинике
- source_sentence: Белок общий в суточной моче
  sentences:
  - Уран в моче
  - Белок общий в сыворотке
  - Исследование уровня антигена фактора Виллебранда
- source_sentence: 'Развернутая диагностика склеродермии (иммуноблот антинуклеарных
    антител: анти-Scl-70, CENT-A, CENT-B, RP11, RP155, Fibrillarin, NOR90, Th/To,
    PM-Scl 75, Ku, PDGFR, Ro-52) и антинуклеарный фактор (АНФ), иммуноблот'
  sentences:
  - 'Токсоплазма (Toxoplasma gondii): Антитела: IgG, (количественно). Метод: ИФА'
  - 'Эпителий кролика, IgE, аллерген - e82. Метод: ImmunoCAP'
  - Антинуклеарные антитела, IgG (анти-Sm, RNP/Sm, SS-A, SS-B, Scl-70, PM-Scl, PCNA,
    dsDNA, CENT-B, Jo-1, к гистонам, к нуклеосомам, Ribo P, AMA-M2), иммуноблот
- source_sentence: Определение активности амилазы в моче
  sentences:
  - Амилаза общая в суточной моче
  - 'Микоплазма гениталиум (Mycoplasma genitalium): ДНК, (качественно). Метод: реал-тайм
    ПЦР'
  - 'Пенициллин V, IgE, аллерген - c2. Метод: ИФА'
pipeline_tag: sentence-similarity
library_name: sentence-transformers
metrics:
- cosine_accuracy
- cosine_accuracy_threshold
- cosine_f1
- cosine_f1_threshold
- cosine_precision
- cosine_recall
- cosine_ap
- cosine_mcc
model-index:
- name: SentenceTransformer based on deepvk/USER-bge-m3
  results:
  - task:
      type: binary-classification
      name: Binary Classification
    dataset:
      name: binary eval test
      type: binary-eval-test
    metrics:
    - type: cosine_accuracy
      value: 0.9442084651302907
      name: Cosine Accuracy
    - type: cosine_accuracy_threshold
      value: 0.7781298160552979
      name: Cosine Accuracy Threshold
    - type: cosine_f1
      value: 0.8599519663764634
      name: Cosine F1
    - type: cosine_f1_threshold
      value: 0.7724614143371582
      name: Cosine F1 Threshold
    - type: cosine_precision
      value: 0.8569932685115931
      name: Cosine Precision
    - type: cosine_recall
      value: 0.8629311643319777
      name: Cosine Recall
    - type: cosine_ap
      value: 0.9223179041268369
      name: Cosine Ap
    - type: cosine_mcc
      value: 0.824796426094371
      name: Cosine Mcc
---

# SentenceTransformer based on deepvk/USER-bge-m3

This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [deepvk/USER-bge-m3](https://huggingface.co/deepvk/USER-bge-m3). It maps sentences & paragraphs to a 1024-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

## Model Details

### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [deepvk/USER-bge-m3](https://huggingface.co/deepvk/USER-bge-m3) <!-- at revision 0cc6cfe48e260fb0474c753087a69369e88709ae -->
- **Maximum Sequence Length:** 8192 tokens
- **Output Dimensionality:** 1024 dimensions
- **Similarity Function:** Cosine Similarity
<!-- - **Training Dataset:** Unknown -->
<!-- - **Language:** Unknown -->
<!-- - **License:** Unknown -->

### Model Sources

- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)

### Full Model Architecture

```
SentenceTransformer(
  (0): Transformer({'max_seq_length': 8192, 'do_lower_case': False}) with Transformer model: XLMRobertaModel 
  (1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
  (2): Normalize()
)
```

## Usage

### Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

```bash
pip install -U sentence-transformers
```

Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer

# Download from the 🤗 Hub
model = SentenceTransformer("EvgenyBondarenko/BIEncoderRanker")
# Run inference
sentences = [
    'Определение активности амилазы в моче',
    'Амилаза общая в суточной моче',
    'Пенициллин V, IgE, аллерген - c2. Метод: ИФА',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 1024]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
```

<!--
### Direct Usage (Transformers)

<details><summary>Click to see the direct usage in Transformers</summary>

</details>
-->

<!--
### Downstream Usage (Sentence Transformers)

You can finetune this model on your own dataset.

<details><summary>Click to expand</summary>

</details>
-->

<!--
### Out-of-Scope Use

*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->

## Evaluation

### Metrics

#### Binary Classification

* Dataset: `binary-eval-test`
* Evaluated with [<code>BinaryClassificationEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.BinaryClassificationEvaluator)

| Metric                    | Value      |
|:--------------------------|:-----------|
| cosine_accuracy           | 0.9442     |
| cosine_accuracy_threshold | 0.7781     |
| cosine_f1                 | 0.86       |
| cosine_f1_threshold       | 0.7725     |
| cosine_precision          | 0.857      |
| cosine_recall             | 0.8629     |
| **cosine_ap**             | **0.9223** |
| cosine_mcc                | 0.8248     |

<!--
## Bias, Risks and Limitations

*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->

<!--
### Recommendations

*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->

## Training Details

### Training Dataset

#### Unnamed Dataset

* Size: 77,455 training samples
* Columns: <code>sentence1</code>, <code>sentence2</code>, and <code>label</code>
* Approximate statistics based on the first 1000 samples:
  |         | sentence1                                                                          | sentence2                                                                         | label                                           |
  |:--------|:-----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:------------------------------------------------|
  | type    | string                                                                             | string                                                                            | int                                             |
  | details | <ul><li>min: 5 tokens</li><li>mean: 22.98 tokens</li><li>max: 100 tokens</li></ul> | <ul><li>min: 4 tokens</li><li>mean: 22.68 tokens</li><li>max: 87 tokens</li></ul> | <ul><li>0: ~80.00%</li><li>1: ~20.00%</li></ul> |
* Samples:
  | sentence1                                                                                                    | sentence2                                                                                                                                                  | label          |
  |:-------------------------------------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------------------------------------------------------------------------------|:---------------|
  | <code>Посев с кожи на аэробную микрофлору и определение чувствительности к  антимикробным  препаратам</code> | <code>Посев кожи на аэробную и факультативно-анаэробную флору: Определение чувствительности к антибиотикам. Метод: культуральный</code>                    | <code>1</code> |
  | <code>Посев с кожи на аэробную микрофлору и определение чувствительности к  антимикробным  препаратам</code> | <code>Посев отделяемого с кожи/раны на аэробную и факультативно-анаэробную флору: Определение чувствительности к антибиотикам. Метод: культуральный</code> | <code>0</code> |
  | <code>Посев с кожи на аэробную микрофлору и определение чувствительности к  антимикробным  препаратам</code> | <code>Посев отделяемого из глаза на аэробную и факультативно-анаэробную флору: Определение чувствительности к антибиотикам. Метод: культуральный</code>    | <code>0</code> |
* Loss: [<code>ContrastiveLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#contrastiveloss) with these parameters:
  ```json
  {
      "distance_metric": "SiameseDistanceMetric.COSINE_DISTANCE",
      "margin": 0.5,
      "size_average": true
  }
  ```

### Evaluation Dataset

#### Unnamed Dataset

* Size: 33,195 evaluation samples
* Columns: <code>sentence1</code>, <code>sentence2</code>, and <code>label</code>
* Approximate statistics based on the first 1000 samples:
  |         | sentence1                                                                         | sentence2                                                                          | label                                           |
  |:--------|:----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|:------------------------------------------------|
  | type    | string                                                                            | string                                                                             | int                                             |
  | details | <ul><li>min: 6 tokens</li><li>mean: 21.52 tokens</li><li>max: 92 tokens</li></ul> | <ul><li>min: 4 tokens</li><li>mean: 23.61 tokens</li><li>max: 140 tokens</li></ul> | <ul><li>0: ~80.00%</li><li>1: ~20.00%</li></ul> |
* Samples:
  | sentence1                                    | sentence2                                                    | label          |
  |:---------------------------------------------|:-------------------------------------------------------------|:---------------|
  | <code>транскраниальная допплерография</code> | <code>УЗИ сосудов головного мозга</code>                     | <code>1</code> |
  | <code>транскраниальная допплерография</code> | <code>УЗИ сосудов глаза (доплерография)</code>               | <code>0</code> |
  | <code>транскраниальная допплерография</code> | <code>Магнитно-резонансная томография головного мозга</code> | <code>0</code> |
* Loss: [<code>ContrastiveLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#contrastiveloss) with these parameters:
  ```json
  {
      "distance_metric": "SiameseDistanceMetric.COSINE_DISTANCE",
      "margin": 0.5,
      "size_average": true
  }
  ```

### Training Hyperparameters
#### Non-Default Hyperparameters

- `eval_strategy`: steps
- `per_device_train_batch_size`: 32
- `per_device_eval_batch_size`: 32
- `learning_rate`: 2e-05
- `num_train_epochs`: 1
- `warmup_ratio`: 0.1
- `save_only_model`: True
- `fp16`: True
- `load_best_model_at_end`: True

#### All Hyperparameters
<details><summary>Click to expand</summary>

- `overwrite_output_dir`: False
- `do_predict`: False
- `eval_strategy`: steps
- `prediction_loss_only`: True
- `per_device_train_batch_size`: 32
- `per_device_eval_batch_size`: 32
- `per_gpu_train_batch_size`: None
- `per_gpu_eval_batch_size`: None
- `gradient_accumulation_steps`: 1
- `eval_accumulation_steps`: None
- `torch_empty_cache_steps`: None
- `learning_rate`: 2e-05
- `weight_decay`: 0.0
- `adam_beta1`: 0.9
- `adam_beta2`: 0.999
- `adam_epsilon`: 1e-08
- `max_grad_norm`: 1.0
- `num_train_epochs`: 1
- `max_steps`: -1
- `lr_scheduler_type`: linear
- `lr_scheduler_kwargs`: {}
- `warmup_ratio`: 0.1
- `warmup_steps`: 0
- `log_level`: passive
- `log_level_replica`: warning
- `log_on_each_node`: True
- `logging_nan_inf_filter`: True
- `save_safetensors`: True
- `save_on_each_node`: False
- `save_only_model`: True
- `restore_callback_states_from_checkpoint`: False
- `no_cuda`: False
- `use_cpu`: False
- `use_mps_device`: False
- `seed`: 42
- `data_seed`: None
- `jit_mode_eval`: False
- `use_ipex`: False
- `bf16`: False
- `fp16`: True
- `fp16_opt_level`: O1
- `half_precision_backend`: auto
- `bf16_full_eval`: False
- `fp16_full_eval`: False
- `tf32`: None
- `local_rank`: 0
- `ddp_backend`: None
- `tpu_num_cores`: None
- `tpu_metrics_debug`: False
- `debug`: []
- `dataloader_drop_last`: False
- `dataloader_num_workers`: 0
- `dataloader_prefetch_factor`: None
- `past_index`: -1
- `disable_tqdm`: False
- `remove_unused_columns`: True
- `label_names`: None
- `load_best_model_at_end`: True
- `ignore_data_skip`: False
- `fsdp`: []
- `fsdp_min_num_params`: 0
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
- `fsdp_transformer_layer_cls_to_wrap`: None
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
- `deepspeed`: None
- `label_smoothing_factor`: 0.0
- `optim`: adamw_torch
- `optim_args`: None
- `adafactor`: False
- `group_by_length`: False
- `length_column_name`: length
- `ddp_find_unused_parameters`: None
- `ddp_bucket_cap_mb`: None
- `ddp_broadcast_buffers`: False
- `dataloader_pin_memory`: True
- `dataloader_persistent_workers`: False
- `skip_memory_metrics`: True
- `use_legacy_prediction_loop`: False
- `push_to_hub`: False
- `resume_from_checkpoint`: None
- `hub_model_id`: None
- `hub_strategy`: every_save
- `hub_private_repo`: None
- `hub_always_push`: False
- `gradient_checkpointing`: False
- `gradient_checkpointing_kwargs`: None
- `include_inputs_for_metrics`: False
- `include_for_metrics`: []
- `eval_do_concat_batches`: True
- `fp16_backend`: auto
- `push_to_hub_model_id`: None
- `push_to_hub_organization`: None
- `mp_parameters`: 
- `auto_find_batch_size`: False
- `full_determinism`: False
- `torchdynamo`: None
- `ray_scope`: last
- `ddp_timeout`: 1800
- `torch_compile`: False
- `torch_compile_backend`: None
- `torch_compile_mode`: None
- `dispatch_batches`: None
- `split_batches`: None
- `include_tokens_per_second`: False
- `include_num_input_tokens_seen`: False
- `neftune_noise_alpha`: None
- `optim_target_modules`: None
- `batch_eval_metrics`: False
- `eval_on_start`: False
- `use_liger_kernel`: False
- `eval_use_gather_object`: False
- `average_tokens_across_devices`: False
- `prompts`: None
- `batch_sampler`: batch_sampler
- `multi_dataset_batch_sampler`: proportional

</details>

### Training Logs
| Epoch  | Step | Training Loss | Validation Loss | binary-eval-test_cosine_ap |
|:------:|:----:|:-------------:|:---------------:|:--------------------------:|
| 0.2065 | 500  | 0.0125        | 0.0096          | 0.8634                     |
| 0.4131 | 1000 | 0.0094        | 0.0082          | 0.8940                     |
| 0.6196 | 1500 | 0.0086        | 0.0073          | 0.9150                     |
| 0.8261 | 2000 | 0.0078        | 0.0068          | 0.9223                     |


### Framework Versions
- Python: 3.10.12
- Sentence Transformers: 3.4.1
- Transformers: 4.49.0
- PyTorch: 2.6.0+cu118
- Accelerate: 1.4.0
- Datasets: 3.3.2
- Tokenizers: 0.21.0

## Citation

### BibTeX

#### Sentence Transformers
```bibtex
@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}
```

#### ContrastiveLoss
```bibtex
@inproceedings{hadsell2006dimensionality,
    author={Hadsell, R. and Chopra, S. and LeCun, Y.},
    booktitle={2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06)},
    title={Dimensionality Reduction by Learning an Invariant Mapping},
    year={2006},
    volume={2},
    number={},
    pages={1735-1742},
    doi={10.1109/CVPR.2006.100}
}
```

<!--
## Glossary

*Clearly define terms in order to be accessible across audiences.*
-->

<!--
## Model Card Authors

*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->

<!--
## Model Card Contact

*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
-->