fama-small-asr / README.md
spapi's picture
Uniform FAMA model cards
650b7ac verified
---
datasets:
- FBK-MT/mosel
- facebook/covost2
- openslr/librispeech_asr
- facebook/voxpopuli
language:
- en
- it
license: cc-by-4.0
metrics:
- wer
tags:
- speech
- speech recognition
- ASR
pipeline_tag: automatic-speech-recognition
library_name: transformers
---
# FAMA-small-asr
<div>
<img src="FAMA.png" width="100%" alt="FAMA" />
</div>
## Table of Contents
1. [Overview](#overview)
2. [Usage](#Usage)
3. [Results](#Results)
4. [License](#license)
5. [Citation](#citation)
## Overview
FAMA is the first family of large-scale open-science SFMs for English and
Italian trained on [over 150k hours of exclusively open-source(OS)-compliant speech data](https://huggingface.co/datasets/FBK-MT/fama-data).
FAMA models achieve [remarkable results](#results), with ASR and ST improvements on average across languages compared to OWSM,
and is competitive in terms of ASR performance with the Whisper model family while being up to 8 times faster.
All the artifacts used for realizing FAMA models, including codebase, datasets, and models
themself are [released under OS-compliant licenses](#license), promoting a more
responsible creation of models in our community.
It is available in 2 sizes, with 2 variants for ASR only:
- [FAMA-small](https://huggingface.co/FBK-MT/fama-small) - 475 million parameters
- [FAMA-medium](https://huggingface.co/FBK-MT/fama-medium) - 878 million parameters
- [FAMA-small-asr](https://huggingface.co/FBK-MT/fama-small-asr) - 475 million parameters
- [FAMA-medium-asr](https://huggingface.co/FBK-MT/fama-medium-asr) - 878 million parameters
For further details, please refer to the paper [FAMA: The First Large-Scale Open-Science Speech Foundation Model for English and Italian](https://huggingface.co/papers/2505.22759).
The code is available in the [Github repository](https://github.com/hlt-mt/FBK-fairseq).
## Usage
FAMA models are supported in Hugging Face πŸ€— Transformers.
To run the model, first install the Transformers and Datasets libraries.
```sh
pip install transformers==4.48.1 datasets
```
To perform a single inference on a sample audio file using the
[`pipeline`](https://huggingface.co/docs/transformers/main_classes/pipelines#transformers.AutomaticSpeechRecognitionPipeline)
class, run:
```python
import torch
from transformers import AutoProcessor, pipeline
from datasets import load_dataset
model_id = "FBK-MT/fama-small-asr"
processor = AutoProcessor.from_pretrained(model_id)
device = "cuda:0" if torch.cuda.is_available() else "cpu"
tgt_lang = "en"
# Force the model to start with the language tag
lang_tag = "<lang:{}>".format(tgt_lang)
lang_tag_id = processor.tokenizer.convert_tokens_to_ids(lang_tag)
generate_kwargs = {"num_beams": 5, "no_repeat_ngram_size": 5, "forced_bos_token_id": lang_tag_id}
pipe = pipeline(
"automatic-speech-recognition",
model=model_id,
trust_remote_code=True,
torch_dtype=torch.float32,
device=device,
return_timestamps=False,
generate_kwargs=generate_kwargs
)
dataset = load_dataset("distil-whisper/librispeech_asr_dummy", "clean", split="validation")
sample = dataset[0]["audio"]
result = pipe(sample)
print(result["text"])
```
Where `tgt_lang` is the target language (either `en` or `it`). The source languages has not to be specified.
To run the inference on a local audio file `audio.wav`, call the pipeline with:
```python
result = pipe("audio.wav")
```
To perform a batch inference with size `batch_size`, run:
```python
result = pipe(["audio_1.wav", "audio_2.wav"], batch_size=2)
```
For the inference, we suggest converting the audio files in wav format with 16kHz sampling rate and 1 channel.
## Results
We evaluate FAMA-ASR on ASR using popular open-source datasets such as CommonVoice, Multilingual LibriSpeech (MLS), and VoxPopuli.
The metric used is WER (↓).
We also benchmark FAMA in terms of computational time and maximum batch size supported on HuggingFace against Whisper and SeamlessM4T models. The metric used is the inverse real time factor (xRTF).
**Key highlights:**
- FAMA achieves up to 4.2 WER improvement on average across languages compared to OWSM v3.1
- FAMA is up to 8 times faster than Whisper large-v3 while achieving comparable performance
### Automatic Speech Recogniton (ASR)
| ***Model/Dataset WER (↓)*** | **CommonVoice**-*en* | **CommonVoice**-*it* | **MLS**-*en* | **MLS**-*it* | **VoxPopuli**-*en* | **VoxPopuli**-*it* | **AVG**-*en* | **AVG**-*it* |
|-----------------------------------------|---------|---------|---------|---------|---------|----------|---------|----------|
| Whisper *medium* | 14.5 | 10.4 | 14.2 | 15.9 | 8.1 | 26.8 | 12.3 | 17.7 |
| Whisper *large-v3* | 11.2 | 6.5 | **5.0** | 8.8 | 7.1 | 18.8 | 7.8 | 11.4 |
| OWSM v3.1 *medium* | 11.9 | 12.5 | 6.6 | 19.3 | 8.4 | 24.0 | 9.0 | 18.6 |
| SeamlessM4T *medium* | 10.7 | 7.8 | 8.8 | 11.3 | 10.2 | 18.2 | 9.9 | 12.4 |
| SeamlessM4T *v2-large* | **7.7** | **5.0** | 6.4 | **8.5** | **6.9** | 16.6 | **7.0** | **10.0** |
| FAMA-ASR *small* | 13.8 | 8.9 | 5.8 | 12.6 | 7.2 | 15.7 | 8.9 | 12.4 |
| FAMA-ASR *medium* | 11.7 | 7.1 | 5.1 | 12.2 | 7.0 | 15.9 | 7.9 | 11.7 |
| FAMA *small* | 13.7 | 8.6 | 5.8 | 12.8 | 7.3 | **15.6** | 8.9 | 12.3 |
| FAMA *medium* | 11.5 | 7.0 | 5.2 | 13.9 | 7.2 | 15.9 | 8.0 | 12.3 |
### Computational Time and Maximum Batch Size
| ***Model*** | ***Batch Size*** | ***xRTF en (↑)*** | ***xRTF it (↑)*** | ***xRTF AVG (↑)*** |
|------------------------|------------|-------------|-------------|--------------|
| Whisper *medium* | 8 | 13.3 | 10.9 | 12.1 |
| Whisper *large-v3* | 4 | 7.9 | 6.5 | 7.2 |
| SeamlessM4T *medium* | 2 | 28.5 | 26.2 | 27.4 |
| SeamlessM4T *v2-large* | 2 | 13.7 | 13.3 | 13.5 |
| FAMA *small* | 16 | **57.4** | **56.0** | **56.7** |
| FAMA *medium* | 8 | 39.5 | 41.2 | 40.4 |
## License
We release the FAMA model weights, and training data under the CC-BY 4.0 license.
The training data can be found in [FAMA Training Data](https://huggingface.co/datasets/FBK-MT/fama-data).
The [original FBK-fairseq codebase](https://github.com/hlt-mt/FBK-fairseq) used to train the model is released under the Apache 2.0 license.
## Citation
If you use FAMA in your work, please cite:
```
@misc{papi2025fama,
title={FAMA: The First Large-Scale Open-Science Speech Foundation Model for English and Italian},
author={Sara Papi and Marco Gaido and Luisa Bentivogli and Alessio Brutti and Mauro Cettolo and Roberto Gretter and Marco Matassoni and Mohamed Nabih and Matteo Negri},
year={2025}
}
```