transformer_multi_head_robbert2023
This is a multi-head transformer regression model based on DTAI-KULeuven/robbert-2023-dutch-large, fine-tuned to predict four separate text quality scores for Dutch texts.
The final aggregate metric recomputes a combined score from the four heads and compares it to the actual aggregate, providing robust quality tracking.
π Training & Evaluation
Epoch | Train Loss | Val Loss | RMSE (delta_cola_to_final) | RΒ² (delta_cola_to_final) | RMSE (delta_perplexity_to_final_large) | RΒ² (delta_perplexity_to_final_large) | RMSE (iter_to_final_simplified) | RΒ² (iter_to_final_simplified) | RMSE (robbert_delta_blurb_to_final) | RΒ² (robbert_delta_blurb_to_final) | Mean RMSE |
---|---|---|---|---|---|---|---|---|---|---|---|
1 | 0.0271 | 0.0179 | 0.1478 | 0.4119 | 0.1247 | 0.4569 | 0.1408 | 0.8151 | 0.1192 | 0.7196 | 0.1331 |
2 | 0.0191 | 0.0168 | 0.1495 | 0.3980 | 0.1038 | 0.6239 | 0.1368 | 0.8255 | 0.1233 | 0.7004 | 0.1283 |
3 | 0.0166 | 0.0151 | 0.1471 | 0.4172 | 0.0994 | 0.6548 | 0.1278 | 0.8477 | 0.1125 | 0.7503 | 0.1217 |
4 | 0.0148 | 0.0145 | 0.1421 | 0.4557 | 0.0969 | 0.6720 | 0.1254 | 0.8535 | 0.1131 | 0.7478 | 0.1194 |
Final aggregate performance
β
Aggregate RMSE: 0.0860
β
Aggregate RΒ²: 0.8078
π§Ύ Notes
- This model uses four parallel regression heads for:
delta_cola_to_final
delta_perplexity_to_final_large
iter_to_final_simplified
robbert_delta_blurb_to_final
- The final evaluation recomputes a single aggregate score for robust performance tracking.
- Fine-tuned on a proprietary dataset of Dutch text variations.
- Base: RobBERT 2023 Large (
DTAI-KULeuven/robbert-2023-dutch-large
).
β Usage Example
from transformers import AutoTokenizer, AutoModelForSequenceClassification
tokenizer = AutoTokenizer.from_pretrained("DTAI-KULeuven/robbert-2023-dutch-large")
model = AutoModelForSequenceClassification.from_pretrained(
"your-org/transformer_multi_head_robbert2023",
num_labels=4,
problem_type="regression"
)
inputs = tokenizer("Dit is een voorbeeldzin in het Nederlands.", return_tensors="pt")
outputs = model(**inputs)
print(outputs.logits) # shape: [batch_size, 4] β 4 predicted scores
- Downloads last month
- 4
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
π
Ask for provider support
Model tree for Felixbrk/robbert-2023-dutch-large-multi-score-text-only
Base model
DTAI-KULeuven/robbert-2023-dutch-large