transformer_multi_head_robbertv2_lora

This is a multi-head transformer regression model using RobBERT-v2 with LoRA parameter-efficient fine-tuning, designed to predict four separate text quality scores for Dutch texts.

The final aggregate metric recomputes a combined score from the four heads and compares it to the actual aggregate, providing robust quality tracking.


๐Ÿ“ˆ Training & Evaluation

Epoch Train Loss Val Loss RMSE (delta_cola_to_final) Rยฒ (delta_cola_to_final) RMSE (delta_perplexity_to_final_large) Rยฒ (delta_perplexity_to_final_large) RMSE (iter_to_final_simplified) Rยฒ (iter_to_final_simplified) RMSE (robbert_delta_blurb_to_final) Rยฒ (robbert_delta_blurb_to_final) Mean RMSE
1 0.0363 0.0221 0.1543 0.3456 0.1210 0.4855 0.1765 0.7058 0.1377 0.6308 0.1474
2 0.0237 0.0199 0.1549 0.3401 0.1157 0.5297 0.1621 0.7517 0.1257 0.6922 0.1396
3 0.0212 0.0187 0.1543 0.3457 0.1074 0.5947 0.1547 0.7739 0.1243 0.6991 0.1352
4 0.0201 0.0185 0.1533 0.3544 0.1091 0.5818 0.1531 0.7784 0.1234 0.7032 0.1347
5 0.0196 0.0182 0.1508 0.3752 0.1081 0.5896 0.1528 0.7794 0.1233 0.7041 0.1337

Final aggregate performance
โœ… Aggregate RMSE: 0.0872
โœ… Aggregate Rยฒ: 0.7970


๐Ÿงพ Notes

  • This model uses LoRA fine-tuning to train only ~0.75% of RobBERT-v2โ€™s parameters.
  • It has four parallel regression heads for:
    • delta_cola_to_final
    • delta_perplexity_to_final_large
    • iter_to_final_simplified
    • robbert_delta_blurb_to_final
  • The final test set results confirm robust performance with individual and aggregate metrics.
  • Fine-tuned on a proprietary dataset of Dutch text variations.
  • Base: RobBERT-v2 Dutch Base (`pdelobel
Downloads last month

-

Downloads are not tracked for this model. How to track
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Model tree for Felixbrk/robbert-v2-dutch-base-multi-score-text-only

Adapter
(1)
this model