transformer_multi_head_robbertv2_lora
This is a multi-head transformer regression model using RobBERT-v2 with LoRA parameter-efficient fine-tuning, designed to predict four separate text quality scores for Dutch texts.
The final aggregate metric recomputes a combined score from the four heads and compares it to the actual aggregate, providing robust quality tracking.
๐ Training & Evaluation
Epoch | Train Loss | Val Loss | RMSE (delta_cola_to_final) | Rยฒ (delta_cola_to_final) | RMSE (delta_perplexity_to_final_large) | Rยฒ (delta_perplexity_to_final_large) | RMSE (iter_to_final_simplified) | Rยฒ (iter_to_final_simplified) | RMSE (robbert_delta_blurb_to_final) | Rยฒ (robbert_delta_blurb_to_final) | Mean RMSE |
---|---|---|---|---|---|---|---|---|---|---|---|
1 | 0.0363 | 0.0221 | 0.1543 | 0.3456 | 0.1210 | 0.4855 | 0.1765 | 0.7058 | 0.1377 | 0.6308 | 0.1474 |
2 | 0.0237 | 0.0199 | 0.1549 | 0.3401 | 0.1157 | 0.5297 | 0.1621 | 0.7517 | 0.1257 | 0.6922 | 0.1396 |
3 | 0.0212 | 0.0187 | 0.1543 | 0.3457 | 0.1074 | 0.5947 | 0.1547 | 0.7739 | 0.1243 | 0.6991 | 0.1352 |
4 | 0.0201 | 0.0185 | 0.1533 | 0.3544 | 0.1091 | 0.5818 | 0.1531 | 0.7784 | 0.1234 | 0.7032 | 0.1347 |
5 | 0.0196 | 0.0182 | 0.1508 | 0.3752 | 0.1081 | 0.5896 | 0.1528 | 0.7794 | 0.1233 | 0.7041 | 0.1337 |
Final aggregate performance
โ
Aggregate RMSE: 0.0872
โ
Aggregate Rยฒ: 0.7970
๐งพ Notes
- This model uses LoRA fine-tuning to train only ~0.75% of RobBERT-v2โs parameters.
- It has four parallel regression heads for:
delta_cola_to_final
delta_perplexity_to_final_large
iter_to_final_simplified
robbert_delta_blurb_to_final
- The final test set results confirm robust performance with individual and aggregate metrics.
- Fine-tuned on a proprietary dataset of Dutch text variations.
- Base: RobBERT-v2 Dutch Base (`pdelobel
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support
Model tree for Felixbrk/robbert-v2-dutch-base-multi-score-text-only
Base model
pdelobelle/robbert-v2-dutch-base