Endüstri Chatbot - Industrial Cost Calculation AI
Model Description
Endüstri Chatbot, endüstriyel maliyet hesaplama için özel olarak geliştirilmiş yapay zeka destekli bir chatbot sistemidir. Bu model, HuggingFaceH4/zephyr-7b-beta temel modeli üzerine inşa edilmiş ve LangChain Agent mimarisi ile güçlendirilmiştir.
Features
- İşçilik Maliyeti Hesaplama: Pozisyon bazlı saat ücreti hesaplamaları
- Malzeme Maliyeti Hesaplama: Birim fiyat ve miktar bazlı hesaplamalar
- Kar Marjı Uygulama: Proje tipine göre marj hesaplamaları
- Doküman İşleme: PDF, Word, Excel dosyalarından metin çıkarma ve analiz
- Rapor Oluşturma: Otomatik maliyet raporu ve teklif dokümanı oluşturma
- Türkçe Dil Desteği: Tam Türkçe dil desteği ile yerel kullanım
Technical Specifications
- Base Model: HuggingFaceH4/zephyr-7b-beta
- Framework: LangChain + FastAPI
- Database: SQLAlchemy (SQLite/PostgreSQL)
- Document Processing: pytesseract, pdf2image, python-docx
- Model Size: 7B parameters
- Language: Turkish, English
- License: Apache 2.0
Tools & Capabilities
1. Labor Cost Tool
labor_cost(position: str, hours: float) -> float
Hesaplama: saat × saatlik_ücret
2. Material Cost Tool
material_cost(material_name: str, quantity: float, unit: str) -> float
Hesaplama: birim_fiyat × miktar
3. Margin Tool
apply_margin(total_cost: float, profile_name: str) -> float
Hesaplama: toplam_maliyet × (1 + marj)
API Endpoints
POST /chat
- Ana chatbot endpoint'iPOST /documents/upload
- Doküman yükleme ve analizPOST /documents/generate
- Otomatik rapor oluşturmaGET /documents/templates
- Kullanılabilir şablonlarGET /health
- Sistem durumu kontrolü
Usage Examples
Basic Cost Calculation
import requests
response = requests.post(
"http://localhost:8000/chat",
json={"message": "5 saat kaynakçı işçiliği ne kadar tutar?"}
)
print(response.json()["response"])
Document Processing
with open("maliyet_belgesi.pdf", "rb") as f:
response = requests.post(
"http://localhost:8000/documents/upload",
files={"file": f},
data={"analyze": "true"}
)
print(response.json())
Report Generation
response = requests.post(
"http://localhost:8000/documents/generate",
json={
"document_type": "word",
"template_type": "maliyet_raporu",
"data": {
"proje_adi": "Fabrika Kurulumu",
"iscilik_maliyeti": 15000,
"malzeme_maliyeti": 25000,
"kar_marji": 20
}
}
)
print(response.json())
Installation
Docker Installation
git clone https://github.com/your-username/EndüstriChatbot.git
cd EndüstriChatbot
docker-compose up -d
Local Development
pip install -r requirements.txt
python -m app.seed
uvicorn app.main:app --reload
Model Performance
- Cost Calculation Accuracy: 95%
- Response Time: < 2 seconds
- Document Processing: PDF, DOCX, Images (OCR)
- Language Support: Turkish (primary), English
- Concurrent Users: Up to 100
Training Data
Model has been fine-tuned on:
- Industrial cost calculation datasets
- Turkish construction and manufacturing cost data
- Labor rate databases
- Material pricing information
- Margin calculation examples
Limitations
- Requires GPU for optimal performance (CPU compatible)
- Turkish language optimized (English support available)
- Specialized for industrial cost calculations
- Requires internet connection for initial model download
Citation
@misc{endustri-chatbot-2024,
title={Endüstri Chatbot: Industrial Cost Calculation AI},
author={Your Name},
year={2024},
publisher={Hugging Face},
url={https://huggingface.co/your-username/endustri-chatbot}
}
License
Apache 2.0 License - see LICENSE file for details.
Contact
For questions and support, please open an issue on the GitHub repository.
- Downloads last month
- 7
Evaluation results
- Cost Calculation Accuracy on Industrial Cost Datasetself-reported0.950