YAML Metadata Warning: empty or missing yaml metadata in repo card (https://huggingface.co/docs/hub/model-cards#model-card-metadata)

my_vits_model

Model Description

A VITS-based TTS model for English speech synthesis

  • Language(s): English
  • Type: Single-speaker Text-to-Speech
  • Model Type: VITS
  • Framework: Coqui TTS
  • Uploaded: 2025-05-29

Intended Use

  • Primary Use: Generating single-speaker speech from text input for applications like virtual assistants, audiobooks, or accessibility tools.
  • Out of Scope: Real-time applications if not optimized for low latency.

Usage

To load and use the model:

from safetensors.torch import load_file
from TTS.config import load_config
from TTS.tts.models import setup_model

# Load configuration
config = load_config("config.json")
model = setup_model(config)

# Load weights
state_dict = load_file("my_vits_model.safetensors")
model.load_state_dict(state_dict)
model.eval()

# Example inference
text = "Hello, this is a test."
wav = model.inference(text, speaker_id=0 if False else None)

Training Data

  • Dataset: Custom dataset
  • Preprocessing: Text normalized, audio sampled at 22050 Hz

Evaluation

  • Metrics: [Add metrics, e.g., Mean Opinion Score (MOS), Word Error Rate (WER)]
  • Results: [Add results, e.g., "Achieved MOS of 4.2 on test set"]

Limitations

  • Limited to English language(s).
  • Performance may vary with noisy or complex input text.

License

  • Released under apache-2.0.

Ethical Considerations

  • Ensure responsible use to avoid generating misleading or harmful audio content.
  • Verify input text to prevent biased or offensive outputs.

Dependencies

  • TTS (Coqui TTS)
  • safetensors
  • torch
Downloads last month
20
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support