detr-arrows / README.md
lysandre's picture
lysandre HF Staff
End of training
e87dcbc verified
|
raw
history blame
11.4 kB
metadata
library_name: transformers
license: apache-2.0
base_model: microsoft/conditional-detr-resnet-50
tags:
  - generated_from_trainer
model-index:
  - name: detr-arrows
    results: []

detr-arrows

This model is a fine-tuned version of microsoft/conditional-detr-resnet-50 on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 1.0409
  • Map: 0.2412
  • Map 50: 0.3706
  • Map 75: 0.2713
  • Map Small: 0.2412
  • Map Medium: -1.0
  • Map Large: -1.0
  • Mar 1: 0.2167
  • Mar 10: 0.6271
  • Mar 100: 0.6271
  • Mar Small: 0.6271
  • Mar Medium: -1.0
  • Mar Large: -1.0
  • Map Left: 0.4352
  • Mar 100 Left: 0.75
  • Map Right: -1.0
  • Mar 100 Right: -1.0
  • Map Up: 0.3486
  • Mar 100 Up: 0.7333
  • Map Down: 0.03
  • Mar 100 Down: 0.6
  • Map ?: 0.151
  • Mar 100 ?: 0.425

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: cosine
  • num_epochs: 30

Training results

Training Loss Epoch Step Validation Loss Map Map 50 Map 75 Map Small Map Medium Map Large Mar 1 Mar 10 Mar 100 Mar Small Mar Medium Mar Large Map Left Mar 100 Left Map Right Mar 100 Right Map Up Mar 100 Up Map Down Mar 100 Down Map ? Mar 100 ?
No log 1.0 8 19.0953 0.0001 0.0004 0.0 0.0001 -1.0 -1.0 0.0 0.0 0.0125 0.0125 -1.0 -1.0 0.0003 0.05 -1.0 -1.0 0.0 0.0 0.0 0.0 0.0 0.0
No log 2.0 16 5.5939 0.0867 0.1924 0.0987 0.0867 -1.0 -1.0 0.1312 0.2625 0.2625 0.2625 -1.0 -1.0 0.1606 0.45 -1.0 -1.0 0.1863 0.6 0.0 0.0 0.0 0.0
No log 3.0 24 2.6945 0.0999 0.3646 0.0219 0.0999 -1.0 -1.0 0.0708 0.3292 0.3604 0.3604 -1.0 -1.0 0.1043 0.55 -1.0 -1.0 0.0568 0.4667 0.0037 0.1 0.2347 0.325
No log 4.0 32 2.1274 0.0563 0.1929 0.0 0.0563 -1.0 -1.0 0.0854 0.2375 0.25 0.25 -1.0 -1.0 0.0326 0.3 -1.0 -1.0 0.0377 0.4 0.0 0.0 0.1547 0.3
No log 5.0 40 1.6849 0.1081 0.3146 0.0349 0.1081 -1.0 -1.0 0.0896 0.4833 0.5021 0.5021 -1.0 -1.0 0.2281 0.575 -1.0 -1.0 0.0687 0.4333 0.0437 0.7 0.092 0.3
No log 6.0 48 1.6286 0.1421 0.2764 0.1372 0.1421 -1.0 -1.0 0.1417 0.425 0.4375 0.4375 -1.0 -1.0 0.3177 0.65 -1.0 -1.0 0.2205 0.6 0.0174 0.4 0.0127 0.1
No log 7.0 56 1.5424 0.112 0.2167 0.0934 0.112 -1.0 -1.0 0.1167 0.4375 0.4375 0.4375 -1.0 -1.0 0.2795 0.625 -1.0 -1.0 0.1396 0.6 0.0174 0.4 0.0113 0.125
No log 8.0 64 1.3504 0.1419 0.238 0.1944 0.1419 -1.0 -1.0 0.1562 0.4104 0.4854 0.4854 -1.0 -1.0 0.2816 0.75 -1.0 -1.0 0.2576 0.7667 0.0111 0.3 0.0171 0.125
No log 9.0 72 1.5176 0.2689 0.5539 0.1617 0.2689 -1.0 -1.0 0.3167 0.4187 0.425 0.425 -1.0 -1.0 0.2535 0.575 -1.0 -1.0 0.308 0.5 0.5 0.5 0.0142 0.125
No log 10.0 80 1.3294 0.3021 0.5244 0.4064 0.3021 -1.0 -1.0 0.3021 0.5333 0.5333 0.5333 -1.0 -1.0 0.3094 0.725 -1.0 -1.0 0.2696 0.6333 0.6 0.6 0.0293 0.175
No log 11.0 88 1.2791 0.2706 0.5077 0.2809 0.2706 -1.0 -1.0 0.1271 0.5583 0.5583 0.5583 -1.0 -1.0 0.2066 0.575 -1.0 -1.0 0.2748 0.5333 0.35 0.7 0.2512 0.425
No log 12.0 96 1.3774 0.2059 0.4747 0.1739 0.2059 -1.0 -1.0 0.125 0.4375 0.4437 0.4437 -1.0 -1.0 0.255 0.65 -1.0 -1.0 0.3381 0.6 0.15 0.3 0.0804 0.225
No log 13.0 104 1.1243 0.3863 0.5912 0.4179 0.3863 -1.0 -1.0 0.3083 0.6646 0.6646 0.6646 -1.0 -1.0 0.2399 0.725 -1.0 -1.0 0.1698 0.6333 0.8 0.8 0.3355 0.5
No log 14.0 112 1.4674 0.2147 0.6485 0.0922 0.2147 -1.0 -1.0 0.1917 0.3583 0.3583 0.3583 -1.0 -1.0 0.2232 0.525 -1.0 -1.0 0.3658 0.5333 0.2 0.2 0.0697 0.175
No log 15.0 120 1.1626 0.1937 0.3712 0.1312 0.1937 -1.0 -1.0 0.1125 0.4062 0.6062 0.6062 -1.0 -1.0 0.2547 0.6 -1.0 -1.0 0.2436 0.5 0.025 0.8 0.2514 0.525
No log 16.0 128 1.1370 0.1939 0.3826 0.2281 0.1939 -1.0 -1.0 0.1604 0.5542 0.5542 0.5542 -1.0 -1.0 0.3822 0.725 -1.0 -1.0 0.24 0.7667 0.016 0.4 0.1373 0.325
No log 17.0 136 1.3054 0.1481 0.3214 0.1517 0.1481 -1.0 -1.0 0.1479 0.4521 0.4521 0.4521 -1.0 -1.0 0.3191 0.65 -1.0 -1.0 0.2092 0.6333 0.0154 0.4 0.0487 0.125
No log 18.0 144 1.0947 0.2181 0.3671 0.237 0.2181 -1.0 -1.0 0.2167 0.6104 0.6104 0.6104 -1.0 -1.0 0.4168 0.75 -1.0 -1.0 0.239 0.6667 0.025 0.6 0.1915 0.425
No log 19.0 152 1.1466 0.1866 0.3405 0.2377 0.1866 -1.0 -1.0 0.175 0.5896 0.5896 0.5896 -1.0 -1.0 0.3651 0.675 -1.0 -1.0 0.2282 0.6333 0.0292 0.7 0.1241 0.35
No log 20.0 160 1.1329 0.1857 0.3523 0.2092 0.1857 -1.0 -1.0 0.1875 0.5375 0.5375 0.5375 -1.0 -1.0 0.3855 0.7 -1.0 -1.0 0.1867 0.6 0.025 0.5 0.1457 0.35
No log 21.0 168 1.1367 0.2188 0.372 0.2712 0.2188 -1.0 -1.0 0.2042 0.5729 0.5729 0.5729 -1.0 -1.0 0.415 0.7 -1.0 -1.0 0.3136 0.6667 0.0286 0.6 0.1178 0.325
No log 22.0 176 1.0748 0.2561 0.417 0.2927 0.2561 -1.0 -1.0 0.2208 0.6062 0.6062 0.6062 -1.0 -1.0 0.4447 0.7 -1.0 -1.0 0.3602 0.7 0.0273 0.6 0.1923 0.425
No log 23.0 184 1.0644 0.2245 0.3693 0.2573 0.2245 -1.0 -1.0 0.2021 0.5958 0.5958 0.5958 -1.0 -1.0 0.4082 0.725 -1.0 -1.0 0.3118 0.7333 0.0263 0.5 0.1519 0.425
No log 24.0 192 1.0710 0.2365 0.3897 0.2679 0.2365 -1.0 -1.0 0.2083 0.6042 0.6042 0.6042 -1.0 -1.0 0.4215 0.725 -1.0 -1.0 0.3064 0.6667 0.03 0.6 0.1879 0.425
No log 25.0 200 1.0512 0.2455 0.3904 0.2713 0.2455 -1.0 -1.0 0.225 0.6146 0.6146 0.6146 -1.0 -1.0 0.4215 0.725 -1.0 -1.0 0.3506 0.7333 0.03 0.6 0.1798 0.4
No log 26.0 208 1.0671 0.2332 0.3744 0.2588 0.2332 -1.0 -1.0 0.2104 0.5958 0.5958 0.5958 -1.0 -1.0 0.4043 0.725 -1.0 -1.0 0.3484 0.7333 0.0263 0.5 0.1537 0.425
No log 27.0 216 1.0523 0.2469 0.4035 0.2588 0.2469 -1.0 -1.0 0.2354 0.6021 0.6021 0.6021 -1.0 -1.0 0.4089 0.75 -1.0 -1.0 0.3481 0.7333 0.0263 0.5 0.2042 0.425
No log 28.0 224 1.0458 0.249 0.4035 0.2588 0.249 -1.0 -1.0 0.2354 0.6021 0.6021 0.6021 -1.0 -1.0 0.4172 0.75 -1.0 -1.0 0.3481 0.7333 0.0263 0.5 0.2042 0.425
No log 29.0 232 1.0416 0.2411 0.3706 0.2713 0.2411 -1.0 -1.0 0.2167 0.6271 0.6271 0.6271 -1.0 -1.0 0.4352 0.75 -1.0 -1.0 0.3481 0.7333 0.03 0.6 0.151 0.425
No log 30.0 240 1.0409 0.2412 0.3706 0.2713 0.2412 -1.0 -1.0 0.2167 0.6271 0.6271 0.6271 -1.0 -1.0 0.4352 0.75 -1.0 -1.0 0.3486 0.7333 0.03 0.6 0.151 0.425

Framework versions

  • Transformers 4.48.0.dev0
  • Pytorch 2.5.1+cu124
  • Datasets 3.2.0
  • Tokenizers 0.21.0