metadata
library_name: transformers
license: apache-2.0
base_model: microsoft/conditional-detr-resnet-50
tags:
- generated_from_trainer
model-index:
- name: detr-arrows
results: []
detr-arrows
This model is a fine-tuned version of microsoft/conditional-detr-resnet-50 on the None dataset. It achieves the following results on the evaluation set:
- Loss: 1.0409
- Map: 0.2412
- Map 50: 0.3706
- Map 75: 0.2713
- Map Small: 0.2412
- Map Medium: -1.0
- Map Large: -1.0
- Mar 1: 0.2167
- Mar 10: 0.6271
- Mar 100: 0.6271
- Mar Small: 0.6271
- Mar Medium: -1.0
- Mar Large: -1.0
- Map Left: 0.4352
- Mar 100 Left: 0.75
- Map Right: -1.0
- Mar 100 Right: -1.0
- Map Up: 0.3486
- Mar 100 Up: 0.7333
- Map Down: 0.03
- Mar 100 Down: 0.6
- Map ?: 0.151
- Mar 100 ?: 0.425
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- num_epochs: 30
Training results
Training Loss | Epoch | Step | Validation Loss | Map | Map 50 | Map 75 | Map Small | Map Medium | Map Large | Mar 1 | Mar 10 | Mar 100 | Mar Small | Mar Medium | Mar Large | Map Left | Mar 100 Left | Map Right | Mar 100 Right | Map Up | Mar 100 Up | Map Down | Mar 100 Down | Map ? | Mar 100 ? |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
No log | 1.0 | 8 | 19.0953 | 0.0001 | 0.0004 | 0.0 | 0.0001 | -1.0 | -1.0 | 0.0 | 0.0 | 0.0125 | 0.0125 | -1.0 | -1.0 | 0.0003 | 0.05 | -1.0 | -1.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
No log | 2.0 | 16 | 5.5939 | 0.0867 | 0.1924 | 0.0987 | 0.0867 | -1.0 | -1.0 | 0.1312 | 0.2625 | 0.2625 | 0.2625 | -1.0 | -1.0 | 0.1606 | 0.45 | -1.0 | -1.0 | 0.1863 | 0.6 | 0.0 | 0.0 | 0.0 | 0.0 |
No log | 3.0 | 24 | 2.6945 | 0.0999 | 0.3646 | 0.0219 | 0.0999 | -1.0 | -1.0 | 0.0708 | 0.3292 | 0.3604 | 0.3604 | -1.0 | -1.0 | 0.1043 | 0.55 | -1.0 | -1.0 | 0.0568 | 0.4667 | 0.0037 | 0.1 | 0.2347 | 0.325 |
No log | 4.0 | 32 | 2.1274 | 0.0563 | 0.1929 | 0.0 | 0.0563 | -1.0 | -1.0 | 0.0854 | 0.2375 | 0.25 | 0.25 | -1.0 | -1.0 | 0.0326 | 0.3 | -1.0 | -1.0 | 0.0377 | 0.4 | 0.0 | 0.0 | 0.1547 | 0.3 |
No log | 5.0 | 40 | 1.6849 | 0.1081 | 0.3146 | 0.0349 | 0.1081 | -1.0 | -1.0 | 0.0896 | 0.4833 | 0.5021 | 0.5021 | -1.0 | -1.0 | 0.2281 | 0.575 | -1.0 | -1.0 | 0.0687 | 0.4333 | 0.0437 | 0.7 | 0.092 | 0.3 |
No log | 6.0 | 48 | 1.6286 | 0.1421 | 0.2764 | 0.1372 | 0.1421 | -1.0 | -1.0 | 0.1417 | 0.425 | 0.4375 | 0.4375 | -1.0 | -1.0 | 0.3177 | 0.65 | -1.0 | -1.0 | 0.2205 | 0.6 | 0.0174 | 0.4 | 0.0127 | 0.1 |
No log | 7.0 | 56 | 1.5424 | 0.112 | 0.2167 | 0.0934 | 0.112 | -1.0 | -1.0 | 0.1167 | 0.4375 | 0.4375 | 0.4375 | -1.0 | -1.0 | 0.2795 | 0.625 | -1.0 | -1.0 | 0.1396 | 0.6 | 0.0174 | 0.4 | 0.0113 | 0.125 |
No log | 8.0 | 64 | 1.3504 | 0.1419 | 0.238 | 0.1944 | 0.1419 | -1.0 | -1.0 | 0.1562 | 0.4104 | 0.4854 | 0.4854 | -1.0 | -1.0 | 0.2816 | 0.75 | -1.0 | -1.0 | 0.2576 | 0.7667 | 0.0111 | 0.3 | 0.0171 | 0.125 |
No log | 9.0 | 72 | 1.5176 | 0.2689 | 0.5539 | 0.1617 | 0.2689 | -1.0 | -1.0 | 0.3167 | 0.4187 | 0.425 | 0.425 | -1.0 | -1.0 | 0.2535 | 0.575 | -1.0 | -1.0 | 0.308 | 0.5 | 0.5 | 0.5 | 0.0142 | 0.125 |
No log | 10.0 | 80 | 1.3294 | 0.3021 | 0.5244 | 0.4064 | 0.3021 | -1.0 | -1.0 | 0.3021 | 0.5333 | 0.5333 | 0.5333 | -1.0 | -1.0 | 0.3094 | 0.725 | -1.0 | -1.0 | 0.2696 | 0.6333 | 0.6 | 0.6 | 0.0293 | 0.175 |
No log | 11.0 | 88 | 1.2791 | 0.2706 | 0.5077 | 0.2809 | 0.2706 | -1.0 | -1.0 | 0.1271 | 0.5583 | 0.5583 | 0.5583 | -1.0 | -1.0 | 0.2066 | 0.575 | -1.0 | -1.0 | 0.2748 | 0.5333 | 0.35 | 0.7 | 0.2512 | 0.425 |
No log | 12.0 | 96 | 1.3774 | 0.2059 | 0.4747 | 0.1739 | 0.2059 | -1.0 | -1.0 | 0.125 | 0.4375 | 0.4437 | 0.4437 | -1.0 | -1.0 | 0.255 | 0.65 | -1.0 | -1.0 | 0.3381 | 0.6 | 0.15 | 0.3 | 0.0804 | 0.225 |
No log | 13.0 | 104 | 1.1243 | 0.3863 | 0.5912 | 0.4179 | 0.3863 | -1.0 | -1.0 | 0.3083 | 0.6646 | 0.6646 | 0.6646 | -1.0 | -1.0 | 0.2399 | 0.725 | -1.0 | -1.0 | 0.1698 | 0.6333 | 0.8 | 0.8 | 0.3355 | 0.5 |
No log | 14.0 | 112 | 1.4674 | 0.2147 | 0.6485 | 0.0922 | 0.2147 | -1.0 | -1.0 | 0.1917 | 0.3583 | 0.3583 | 0.3583 | -1.0 | -1.0 | 0.2232 | 0.525 | -1.0 | -1.0 | 0.3658 | 0.5333 | 0.2 | 0.2 | 0.0697 | 0.175 |
No log | 15.0 | 120 | 1.1626 | 0.1937 | 0.3712 | 0.1312 | 0.1937 | -1.0 | -1.0 | 0.1125 | 0.4062 | 0.6062 | 0.6062 | -1.0 | -1.0 | 0.2547 | 0.6 | -1.0 | -1.0 | 0.2436 | 0.5 | 0.025 | 0.8 | 0.2514 | 0.525 |
No log | 16.0 | 128 | 1.1370 | 0.1939 | 0.3826 | 0.2281 | 0.1939 | -1.0 | -1.0 | 0.1604 | 0.5542 | 0.5542 | 0.5542 | -1.0 | -1.0 | 0.3822 | 0.725 | -1.0 | -1.0 | 0.24 | 0.7667 | 0.016 | 0.4 | 0.1373 | 0.325 |
No log | 17.0 | 136 | 1.3054 | 0.1481 | 0.3214 | 0.1517 | 0.1481 | -1.0 | -1.0 | 0.1479 | 0.4521 | 0.4521 | 0.4521 | -1.0 | -1.0 | 0.3191 | 0.65 | -1.0 | -1.0 | 0.2092 | 0.6333 | 0.0154 | 0.4 | 0.0487 | 0.125 |
No log | 18.0 | 144 | 1.0947 | 0.2181 | 0.3671 | 0.237 | 0.2181 | -1.0 | -1.0 | 0.2167 | 0.6104 | 0.6104 | 0.6104 | -1.0 | -1.0 | 0.4168 | 0.75 | -1.0 | -1.0 | 0.239 | 0.6667 | 0.025 | 0.6 | 0.1915 | 0.425 |
No log | 19.0 | 152 | 1.1466 | 0.1866 | 0.3405 | 0.2377 | 0.1866 | -1.0 | -1.0 | 0.175 | 0.5896 | 0.5896 | 0.5896 | -1.0 | -1.0 | 0.3651 | 0.675 | -1.0 | -1.0 | 0.2282 | 0.6333 | 0.0292 | 0.7 | 0.1241 | 0.35 |
No log | 20.0 | 160 | 1.1329 | 0.1857 | 0.3523 | 0.2092 | 0.1857 | -1.0 | -1.0 | 0.1875 | 0.5375 | 0.5375 | 0.5375 | -1.0 | -1.0 | 0.3855 | 0.7 | -1.0 | -1.0 | 0.1867 | 0.6 | 0.025 | 0.5 | 0.1457 | 0.35 |
No log | 21.0 | 168 | 1.1367 | 0.2188 | 0.372 | 0.2712 | 0.2188 | -1.0 | -1.0 | 0.2042 | 0.5729 | 0.5729 | 0.5729 | -1.0 | -1.0 | 0.415 | 0.7 | -1.0 | -1.0 | 0.3136 | 0.6667 | 0.0286 | 0.6 | 0.1178 | 0.325 |
No log | 22.0 | 176 | 1.0748 | 0.2561 | 0.417 | 0.2927 | 0.2561 | -1.0 | -1.0 | 0.2208 | 0.6062 | 0.6062 | 0.6062 | -1.0 | -1.0 | 0.4447 | 0.7 | -1.0 | -1.0 | 0.3602 | 0.7 | 0.0273 | 0.6 | 0.1923 | 0.425 |
No log | 23.0 | 184 | 1.0644 | 0.2245 | 0.3693 | 0.2573 | 0.2245 | -1.0 | -1.0 | 0.2021 | 0.5958 | 0.5958 | 0.5958 | -1.0 | -1.0 | 0.4082 | 0.725 | -1.0 | -1.0 | 0.3118 | 0.7333 | 0.0263 | 0.5 | 0.1519 | 0.425 |
No log | 24.0 | 192 | 1.0710 | 0.2365 | 0.3897 | 0.2679 | 0.2365 | -1.0 | -1.0 | 0.2083 | 0.6042 | 0.6042 | 0.6042 | -1.0 | -1.0 | 0.4215 | 0.725 | -1.0 | -1.0 | 0.3064 | 0.6667 | 0.03 | 0.6 | 0.1879 | 0.425 |
No log | 25.0 | 200 | 1.0512 | 0.2455 | 0.3904 | 0.2713 | 0.2455 | -1.0 | -1.0 | 0.225 | 0.6146 | 0.6146 | 0.6146 | -1.0 | -1.0 | 0.4215 | 0.725 | -1.0 | -1.0 | 0.3506 | 0.7333 | 0.03 | 0.6 | 0.1798 | 0.4 |
No log | 26.0 | 208 | 1.0671 | 0.2332 | 0.3744 | 0.2588 | 0.2332 | -1.0 | -1.0 | 0.2104 | 0.5958 | 0.5958 | 0.5958 | -1.0 | -1.0 | 0.4043 | 0.725 | -1.0 | -1.0 | 0.3484 | 0.7333 | 0.0263 | 0.5 | 0.1537 | 0.425 |
No log | 27.0 | 216 | 1.0523 | 0.2469 | 0.4035 | 0.2588 | 0.2469 | -1.0 | -1.0 | 0.2354 | 0.6021 | 0.6021 | 0.6021 | -1.0 | -1.0 | 0.4089 | 0.75 | -1.0 | -1.0 | 0.3481 | 0.7333 | 0.0263 | 0.5 | 0.2042 | 0.425 |
No log | 28.0 | 224 | 1.0458 | 0.249 | 0.4035 | 0.2588 | 0.249 | -1.0 | -1.0 | 0.2354 | 0.6021 | 0.6021 | 0.6021 | -1.0 | -1.0 | 0.4172 | 0.75 | -1.0 | -1.0 | 0.3481 | 0.7333 | 0.0263 | 0.5 | 0.2042 | 0.425 |
No log | 29.0 | 232 | 1.0416 | 0.2411 | 0.3706 | 0.2713 | 0.2411 | -1.0 | -1.0 | 0.2167 | 0.6271 | 0.6271 | 0.6271 | -1.0 | -1.0 | 0.4352 | 0.75 | -1.0 | -1.0 | 0.3481 | 0.7333 | 0.03 | 0.6 | 0.151 | 0.425 |
No log | 30.0 | 240 | 1.0409 | 0.2412 | 0.3706 | 0.2713 | 0.2412 | -1.0 | -1.0 | 0.2167 | 0.6271 | 0.6271 | 0.6271 | -1.0 | -1.0 | 0.4352 | 0.75 | -1.0 | -1.0 | 0.3486 | 0.7333 | 0.03 | 0.6 | 0.151 | 0.425 |
Framework versions
- Transformers 4.48.0.dev0
- Pytorch 2.5.1+cu124
- Datasets 3.2.0
- Tokenizers 0.21.0