GGarri's picture
End of training
bec3fa3 verified
metadata
language:
  - ko
license: apache-2.0
base_model: openai/whisper-small
tags:
  - whisper-event
  - generated_from_trainer
datasets:
  - GGarri/241113_newdata
metrics:
  - wer
model-index:
  - name: Whisper Small ko
    results:
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: customdata
          type: GGarri/241113_newdata
        metrics:
          - name: Wer
            type: wer
            value: 0.908879049172687

Whisper Small ko

This model is a fine-tuned version of openai/whisper-small on the customdata dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0506
  • Cer: 1.2584
  • Wer: 0.9089

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 32
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • training_steps: 5000
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Cer Wer
1.1428 1.56 100 0.8829 14.7984 14.5304
0.3434 3.12 200 0.2469 2.0625 1.7828
0.0286 4.69 300 0.0447 1.6430 1.4099
0.011 6.25 400 0.0382 1.5148 1.1070
0.0067 7.81 500 0.0409 1.4915 1.0837
0.0042 9.38 600 0.0383 1.2118 0.9438
0.0018 10.94 700 0.0396 1.3866 1.0371
0.0007 12.5 800 0.0445 1.4682 1.0604
0.0004 14.06 900 0.0386 1.2584 0.9089
0.0002 15.62 1000 0.0431 1.1769 0.8273
0.0011 17.19 1100 0.0475 1.2701 0.9205
0.0019 18.75 1200 0.0453 1.4915 1.1419
0.0012 20.31 1300 0.0437 1.2701 0.9205
0.0013 21.88 1400 0.0454 1.3284 0.9205
0.0003 23.44 1500 0.0436 1.3400 0.9438
0.0001 25.0 1600 0.0460 1.3284 0.9904
0.0001 26.56 1700 0.0464 1.3517 1.0137
0.0001 28.12 1800 0.0464 1.3400 1.0021
0.0001 29.69 1900 0.0467 1.3167 0.9788
0.0001 31.25 2000 0.0468 1.3167 0.9788
0.0001 32.81 2100 0.0470 1.3284 0.9904
0.0001 34.38 2200 0.0473 1.2934 0.9438
0.0 35.94 2300 0.0475 1.3051 0.9555
0.0 37.5 2400 0.0477 1.3051 0.9555
0.0 39.06 2500 0.0478 1.3051 0.9555
0.0 40.62 2600 0.0480 1.2934 0.9438
0.0 42.19 2700 0.0482 1.2818 0.9322
0.0 43.75 2800 0.0483 1.2818 0.9322
0.0 45.31 2900 0.0485 1.2818 0.9322
0.0 46.88 3000 0.0486 1.2584 0.9089
0.0 48.44 3100 0.0487 1.2584 0.9089
0.0 50.0 3200 0.0489 1.2584 0.9089
0.0 51.56 3300 0.0490 1.2584 0.9089
0.0 53.12 3400 0.0491 1.2584 0.9089
0.0 54.69 3500 0.0492 1.2584 0.9089
0.0 56.25 3600 0.0493 1.2584 0.9089
0.0 57.81 3700 0.0493 1.2584 0.9089
0.0 59.38 3800 0.0495 1.2584 0.9089
0.0 60.94 3900 0.0495 1.2584 0.9089
0.0 62.5 4000 0.0496 1.2584 0.9089
0.0 64.06 4100 0.0499 1.2584 0.9089
0.0 65.62 4200 0.0501 1.2584 0.9089
0.0 67.19 4300 0.0502 1.2584 0.9089
0.0 68.75 4400 0.0504 1.2584 0.9089
0.0 70.31 4500 0.0505 1.2584 0.9089
0.0 71.88 4600 0.0506 1.2584 0.9089
0.0 73.44 4700 0.0506 1.2584 0.9089
0.0 75.0 4800 0.0506 1.2584 0.9089
0.0 76.56 4900 0.0506 1.2584 0.9089
0.0 78.12 5000 0.0506 1.2584 0.9089

Framework versions

  • Transformers 4.39.2
  • Pytorch 2.0.1
  • Datasets 2.18.0
  • Tokenizers 0.15.2