yolo_finetuned_fruits

This model is a fine-tuned version of hustvl/yolos-tiny on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.7819
  • Map: 0.5883
  • Map 50: 0.8521
  • Map 75: 0.6633
  • Map Small: -1.0
  • Map Medium: 0.4917
  • Map Large: 0.6223
  • Mar 1: 0.4441
  • Mar 10: 0.7224
  • Mar 100: 0.7722
  • Mar Small: -1.0
  • Mar Medium: 0.6417
  • Mar Large: 0.7892
  • Map Banana: 0.4472
  • Mar 100 Banana: 0.7275
  • Map Orange: 0.6126
  • Mar 100 Orange: 0.7833
  • Map Apple: 0.7051
  • Mar 100 Apple: 0.8057

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 4
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: cosine
  • num_epochs: 30

Training results

Training Loss Epoch Step Validation Loss Map Map 50 Map 75 Map Small Map Medium Map Large Mar 1 Mar 10 Mar 100 Mar Small Mar Medium Mar Large Map Banana Mar 100 Banana Map Orange Mar 100 Orange Map Apple Mar 100 Apple
No log 1.0 60 1.9158 0.0195 0.0636 0.0063 -1.0 0.027 0.0198 0.0473 0.1897 0.3615 -1.0 0.2183 0.3761 0.04 0.385 0.0011 0.0881 0.0174 0.6114
No log 2.0 120 2.0371 0.0268 0.078 0.012 -1.0 0.0374 0.0262 0.0794 0.2079 0.3617 -1.0 0.2 0.3771 0.039 0.4075 0.0053 0.1119 0.0361 0.5657
No log 3.0 180 1.4488 0.0432 0.1226 0.0229 -1.0 0.0661 0.0401 0.1905 0.3398 0.5017 -1.0 0.2583 0.5219 0.069 0.625 0.0333 0.2714 0.0272 0.6086
No log 4.0 240 1.2716 0.0733 0.1622 0.0681 -1.0 0.1318 0.0715 0.242 0.4183 0.6169 -1.0 0.3967 0.6399 0.0732 0.6425 0.0524 0.4452 0.0943 0.7629
No log 5.0 300 1.1472 0.1133 0.2136 0.1094 -1.0 0.1777 0.1156 0.2851 0.48 0.6252 -1.0 0.405 0.6456 0.1031 0.7 0.1103 0.4071 0.1265 0.7686
No log 6.0 360 1.1300 0.1191 0.2449 0.1125 -1.0 0.1469 0.1307 0.2699 0.4715 0.6694 -1.0 0.4333 0.6956 0.0991 0.67 0.1202 0.6095 0.1379 0.7286
No log 7.0 420 1.0298 0.1813 0.3059 0.1929 -1.0 0.2227 0.2027 0.3479 0.5318 0.6733 -1.0 0.45 0.6983 0.1167 0.67 0.2302 0.55 0.197 0.8
No log 8.0 480 1.0293 0.2451 0.4266 0.2668 -1.0 0.2595 0.2725 0.3298 0.5753 0.7069 -1.0 0.5267 0.7266 0.1943 0.7125 0.3182 0.6738 0.2229 0.7343
1.2845 9.0 540 1.0215 0.3761 0.6485 0.3915 -1.0 0.4188 0.3996 0.3375 0.6398 0.7336 -1.0 0.6383 0.7473 0.2155 0.6775 0.428 0.7405 0.4848 0.7829
1.2845 10.0 600 0.9666 0.4652 0.7264 0.5036 -1.0 0.3976 0.497 0.3696 0.6634 0.7315 -1.0 0.5817 0.7512 0.3139 0.6775 0.4658 0.7286 0.616 0.7886
1.2845 11.0 660 0.9365 0.4826 0.7627 0.5587 -1.0 0.4124 0.5147 0.3787 0.6606 0.7163 -1.0 0.505 0.7414 0.3238 0.6875 0.4915 0.7071 0.6327 0.7543
1.2845 12.0 720 0.9472 0.4644 0.7652 0.5261 -1.0 0.3875 0.5056 0.3719 0.6594 0.7294 -1.0 0.5717 0.7484 0.3286 0.7025 0.4983 0.7143 0.5663 0.7714
1.2845 13.0 780 0.9087 0.4966 0.764 0.5557 -1.0 0.4804 0.5252 0.3921 0.679 0.7517 -1.0 0.6483 0.7656 0.3481 0.71 0.5176 0.7595 0.624 0.7857
1.2845 14.0 840 0.8610 0.5198 0.7753 0.5692 -1.0 0.4833 0.5606 0.4232 0.7004 0.7477 -1.0 0.6633 0.7606 0.409 0.685 0.5204 0.7667 0.63 0.7914
1.2845 15.0 900 0.8564 0.5518 0.8086 0.6727 -1.0 0.5648 0.5817 0.411 0.6983 0.7569 -1.0 0.645 0.7717 0.4321 0.715 0.5533 0.7643 0.6701 0.7914
1.2845 16.0 960 0.8996 0.5348 0.8088 0.6341 -1.0 0.4901 0.5621 0.4183 0.6793 0.745 -1.0 0.6383 0.7595 0.4119 0.6975 0.5284 0.7405 0.6642 0.7971
0.8009 17.0 1020 0.8437 0.5527 0.8203 0.6544 -1.0 0.4749 0.5871 0.4243 0.6989 0.7535 -1.0 0.6067 0.7722 0.4025 0.71 0.5727 0.7476 0.683 0.8029
0.8009 18.0 1080 0.8433 0.5625 0.8238 0.6682 -1.0 0.4952 0.5982 0.4334 0.6974 0.7577 -1.0 0.5983 0.7777 0.407 0.7175 0.5929 0.7643 0.6876 0.7914
0.8009 19.0 1140 0.8158 0.5855 0.8359 0.6588 -1.0 0.5315 0.614 0.4387 0.7157 0.7715 -1.0 0.6267 0.7896 0.4249 0.735 0.6071 0.7738 0.7245 0.8057
0.8009 20.0 1200 0.7977 0.586 0.8433 0.6602 -1.0 0.5306 0.6157 0.4415 0.7192 0.7753 -1.0 0.6433 0.7929 0.4119 0.7225 0.6322 0.7833 0.7138 0.82
0.8009 21.0 1260 0.8195 0.5916 0.8465 0.6581 -1.0 0.5731 0.6166 0.442 0.7196 0.7795 -1.0 0.6733 0.7941 0.4367 0.73 0.616 0.7857 0.7222 0.8229
0.8009 22.0 1320 0.7861 0.5915 0.8481 0.6645 -1.0 0.5399 0.619 0.4396 0.7219 0.7785 -1.0 0.6583 0.7943 0.4391 0.735 0.6303 0.7976 0.7052 0.8029
0.8009 23.0 1380 0.8101 0.5835 0.848 0.6618 -1.0 0.5154 0.6151 0.4409 0.7128 0.7804 -1.0 0.64 0.7979 0.4427 0.7475 0.614 0.7881 0.6937 0.8057
0.8009 24.0 1440 0.7936 0.5912 0.8462 0.6779 -1.0 0.5577 0.6196 0.4438 0.7217 0.7819 -1.0 0.6733 0.7962 0.4422 0.7425 0.6164 0.7833 0.715 0.82
0.5971 25.0 1500 0.7935 0.5879 0.8557 0.6645 -1.0 0.4766 0.6217 0.441 0.7235 0.7775 -1.0 0.6683 0.7921 0.4412 0.7325 0.6318 0.8 0.6907 0.8
0.5971 26.0 1560 0.7936 0.5867 0.854 0.6559 -1.0 0.4773 0.6209 0.4406 0.719 0.7754 -1.0 0.6417 0.7922 0.4459 0.74 0.6115 0.7833 0.7028 0.8029
0.5971 27.0 1620 0.7856 0.5904 0.8561 0.6682 -1.0 0.5188 0.6238 0.4441 0.7217 0.7748 -1.0 0.6417 0.7919 0.4463 0.7325 0.6143 0.7833 0.7105 0.8086
0.5971 28.0 1680 0.7838 0.5918 0.8561 0.6678 -1.0 0.4937 0.6265 0.4448 0.7231 0.7746 -1.0 0.6417 0.7919 0.4458 0.7275 0.6251 0.7905 0.7047 0.8057
0.5971 29.0 1740 0.7819 0.592 0.8569 0.6674 -1.0 0.4967 0.6266 0.4457 0.724 0.7738 -1.0 0.6417 0.791 0.4476 0.7275 0.6235 0.7881 0.7047 0.8057
0.5971 30.0 1800 0.7819 0.5883 0.8521 0.6633 -1.0 0.4917 0.6223 0.4441 0.7224 0.7722 -1.0 0.6417 0.7892 0.4472 0.7275 0.6126 0.7833 0.7051 0.8057

Framework versions

  • Transformers 4.50.3
  • Pytorch 2.6.0+cu124
  • Datasets 3.5.0
  • Tokenizers 0.21.1
Downloads last month
8
Safetensors
Model size
6.47M params
Tensor type
F32
ยท
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Model tree for GabrielMI/yolo_finetuned_fruits

Base model

hustvl/yolos-tiny
Finetuned
(31)
this model