|
--- |
|
license: apache-2.0 |
|
base_model: "kwai-kolors/kolors-diffusers" |
|
tags: |
|
- kolors |
|
- kolors-diffusers |
|
- text-to-image |
|
- diffusers |
|
- simpletuner |
|
- safe-for-work |
|
- full |
|
|
|
|
|
inference: true |
|
widget: |
|
- text: 'unconditional (blank prompt)' |
|
parameters: |
|
negative_prompt: 'blurry, cropped, ugly' |
|
output: |
|
url: ./assets/image_0_0.png |
|
- text: 'gravitational lensing effects on galaxy' |
|
parameters: |
|
negative_prompt: 'blurry, cropped, ugly' |
|
output: |
|
url: ./assets/image_1_0.png |
|
--- |
|
|
|
# gravlens-grayscale |
|
|
|
This is a full rank finetune derived from [kwai-kolors/kolors-diffusers](https://huggingface.co/kwai-kolors/kolors-diffusers). |
|
|
|
|
|
The main validation prompt used during training was: |
|
``` |
|
gravitational lensing effects on galaxy |
|
``` |
|
|
|
|
|
## Validation settings |
|
- CFG: `5.0` |
|
- CFG Rescale: `0.0` |
|
- Steps: `20` |
|
- Sampler: `None` |
|
- Seed: `42` |
|
- Resolution: `512x512` |
|
|
|
|
|
Note: The validation settings are not necessarily the same as the [training settings](#training-settings). |
|
|
|
You can find some example images in the following gallery: |
|
|
|
|
|
<Gallery /> |
|
|
|
The text encoder **was not** trained. |
|
You may reuse the base model text encoder for inference. |
|
|
|
|
|
## Training settings |
|
|
|
- Training epochs: 0 |
|
- Training steps: 6750 |
|
- Learning rate: 1e-06 |
|
- Learning rate schedule: constant |
|
- Warmup steps: 675 |
|
- Max grad norm: 2.0 |
|
- Effective batch size: 8 |
|
- Micro-batch size: 8 |
|
- Gradient accumulation steps: 1 |
|
- Number of GPUs: 1 |
|
- Gradient checkpointing: True |
|
- Prediction type: epsilon (extra parameters=['training_scheduler_timestep_spacing=trailing', 'inference_scheduler_timestep_spacing=trailing']) |
|
- Optimizer: optimi-lion |
|
- Trainable parameter precision: Pure BF16 |
|
- Caption dropout probability: 10.0% |
|
|
|
|
|
|
|
|
|
## Datasets |
|
|
|
### grayscale-lensing-256 |
|
- Repeats: 15 |
|
- Total number of images: 3689 |
|
- Total number of aspect buckets: 1 |
|
- Resolution: 0.065536 megapixels |
|
- Cropped: False |
|
- Crop style: None |
|
- Crop aspect: None |
|
- Used for regularisation data: No |
|
### grayscale-lensing-512 |
|
- Repeats: 15 |
|
- Total number of images: 1801 |
|
- Total number of aspect buckets: 1 |
|
- Resolution: 0.262144 megapixels |
|
- Cropped: False |
|
- Crop style: None |
|
- Crop aspect: None |
|
- Used for regularisation data: No |
|
|
|
|
|
## Inference |
|
|
|
|
|
```python |
|
import torch |
|
from diffusers import DiffusionPipeline |
|
|
|
model_id = 'GazTrab/gravlens-grayscale' |
|
pipeline = DiffusionPipeline.from_pretrained(model_id, torch_dtype=torch.float32) # loading directly in bf16 |
|
|
|
prompt = "gravitational lensing effects on galaxy" |
|
negative_prompt = 'blurry, cropped, ugly' |
|
|
|
pipeline.to('cuda' if torch.cuda.is_available() else 'mps' if torch.backends.mps.is_available() else 'cpu') # the pipeline is already in its target precision level |
|
image = pipeline( |
|
prompt=prompt, |
|
negative_prompt=negative_prompt, |
|
num_inference_steps=20, |
|
generator=torch.Generator(device='cuda' if torch.cuda.is_available() else 'mps' if torch.backends.mps.is_available() else 'cpu').manual_seed(42), |
|
width=512, |
|
height=512, |
|
guidance_scale=5.0, |
|
guidance_rescale=0.0, |
|
).images[0] |
|
image.save("output.png", format="PNG") |
|
``` |
|
|
|
|
|
|
|
|