gravlens-grayscale / README.md
GazTrab's picture
Trained for 0 epochs and 6750 steps.
1b7625c verified
---
license: apache-2.0
base_model: "kwai-kolors/kolors-diffusers"
tags:
- kolors
- kolors-diffusers
- text-to-image
- diffusers
- simpletuner
- safe-for-work
- full
inference: true
widget:
- text: 'unconditional (blank prompt)'
parameters:
negative_prompt: 'blurry, cropped, ugly'
output:
url: ./assets/image_0_0.png
- text: 'gravitational lensing effects on galaxy'
parameters:
negative_prompt: 'blurry, cropped, ugly'
output:
url: ./assets/image_1_0.png
---
# gravlens-grayscale
This is a full rank finetune derived from [kwai-kolors/kolors-diffusers](https://huggingface.co/kwai-kolors/kolors-diffusers).
The main validation prompt used during training was:
```
gravitational lensing effects on galaxy
```
## Validation settings
- CFG: `5.0`
- CFG Rescale: `0.0`
- Steps: `20`
- Sampler: `None`
- Seed: `42`
- Resolution: `512x512`
Note: The validation settings are not necessarily the same as the [training settings](#training-settings).
You can find some example images in the following gallery:
<Gallery />
The text encoder **was not** trained.
You may reuse the base model text encoder for inference.
## Training settings
- Training epochs: 0
- Training steps: 6750
- Learning rate: 1e-06
- Learning rate schedule: constant
- Warmup steps: 675
- Max grad norm: 2.0
- Effective batch size: 8
- Micro-batch size: 8
- Gradient accumulation steps: 1
- Number of GPUs: 1
- Gradient checkpointing: True
- Prediction type: epsilon (extra parameters=['training_scheduler_timestep_spacing=trailing', 'inference_scheduler_timestep_spacing=trailing'])
- Optimizer: optimi-lion
- Trainable parameter precision: Pure BF16
- Caption dropout probability: 10.0%
## Datasets
### grayscale-lensing-256
- Repeats: 15
- Total number of images: 3689
- Total number of aspect buckets: 1
- Resolution: 0.065536 megapixels
- Cropped: False
- Crop style: None
- Crop aspect: None
- Used for regularisation data: No
### grayscale-lensing-512
- Repeats: 15
- Total number of images: 1801
- Total number of aspect buckets: 1
- Resolution: 0.262144 megapixels
- Cropped: False
- Crop style: None
- Crop aspect: None
- Used for regularisation data: No
## Inference
```python
import torch
from diffusers import DiffusionPipeline
model_id = 'GazTrab/gravlens-grayscale'
pipeline = DiffusionPipeline.from_pretrained(model_id, torch_dtype=torch.float32) # loading directly in bf16
prompt = "gravitational lensing effects on galaxy"
negative_prompt = 'blurry, cropped, ugly'
pipeline.to('cuda' if torch.cuda.is_available() else 'mps' if torch.backends.mps.is_available() else 'cpu') # the pipeline is already in its target precision level
image = pipeline(
prompt=prompt,
negative_prompt=negative_prompt,
num_inference_steps=20,
generator=torch.Generator(device='cuda' if torch.cuda.is_available() else 'mps' if torch.backends.mps.is_available() else 'cpu').manual_seed(42),
width=512,
height=512,
guidance_scale=5.0,
guidance_rescale=0.0,
).images[0]
image.save("output.png", format="PNG")
```