Model Card for Model ID

GemMaroc‑27B

Unlocking Moroccan Darija proficiency in a state‑of‑the‑art large language model, trained with a minimal‑data, green‑AI recipe that preserves Gemma‑27B’s strong reasoning abilities while adding fluent Darija generation.


Model at a glance

Details
Model ID AbderrahmanSkiredj1/GemMaroc-27b-it
Base model google/gemma-3-27b
Architecture Decoder‑only Transformer (Gemma 3)
Parameters 27 billion
Context length 2 048 tokens
Training regime Supervised fine‑tuning (LoRA → merged) on 50 K high‑quality Darija/English instructions TULU‑50K slice
Compute budget 48 GPU·h (8 × H100‑80GB × 6 h) – ≈ 26 kWh / 10 kg CO₂e
License Apache 2.0

Why another Darija model?

  • Inclusive AI > 36 million speakers of Moroccan Arabic remain underserved by open LLMs.
  • Quality‑over‑quantity A carefully curated 50 K instruction set surfaces Darija competence without sacrificing cross‑lingual reasoning.
  • Green AI GemMaroc achieves Atlas‑Chat‑level Darija scores using < 2 % of the energy.

Benchmark summary

Model Darija MMLU Darija HellaSwag GSM8K @5 HellaSwag (EN)
Atlas‑Chat‑27B 61.9 % 48.4 % 82.0 % 77.8 %
GemMaroc‑27B 61.6 % 60.5 % 84.2 % 79.3 %

Zero‑shot accuracy; full table in the paper.


Quick start

from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline

model_id = "AbderrahmanSkiredj1/GemMaroc-27b-it"

tokenizer = AutoTokenizer.from_pretrained(model_id)
model     = AutoModelForCausalLM.from_pretrained(
    model_id,
    torch_dtype="auto",
    device_map="auto"
)

pipe = pipeline(
    "text-generation",
    model=model,
    tokenizer=tokenizer,
    device_map="auto",
    max_new_tokens=1024,
    temperature=0.7,
    repetition_penalty=1.2,
    no_repeat_ngram_size=3,
)

messages = [
    {"role": "user", "content": "شنو هي نظرية ‘butterfly effect’؟ فسّرها بدارجة ونقّط مثال بسيط."}
]

prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
print(pipe(prompt)[0]["generated_text"][len(prompt):])

Chat template (Gemma 3 format)

The tokenizer provides a baked‑in Jinja template that starts with a begin‑of‑sequence token (<bos>), then alternates user/model turns, each wrapped by <start_of_turn><end_of_turn> markers. When you set add_generation_prompt=True it ends after the opening model tag so the model can continue:

<bos><start_of_turn>user
{user message}<end_of_turn>
<start_of_turn>model

The assistant will keep generating tokens until it decides to emit <end_of_turn>.

prompt = tokenizer.apply_chat_template(messages, add_generation_prompt=True, tokenize=False)

No manual token juggling required—the call above handles BOS, turn delimiters, and newline placement automatically.


Pre‑quantised checkpoints will be published under the same repo tags (gemmaroc‑27b‑awq‑int4, gemmaroc‑27b‑gguf‑q4_k_m).


Training recipe (one‑paragraph recap)

  1. Data Translate a 44 K reasoning slice of TULU 50K into Darija, keeping 20 % English for cross‑lingual robustness.
  2. LoRA SFT Rank 16, α = 32, 3 epochs, bf16, context 2 048.
  3. Merge & push Merge LoRA into base weights (peft.merge_and_unload), convert to safetensors, upload.

Limitations & ethical considerations

  • Sentiment and abstractive summarisation still trail state‑of‑the‑art.
  • Tokeniser is unchanged; rare Darija spellings may fragment.
  • Model may inherit societal biases present in pre‑training data.
  • No RLHF / RLAIF safety alignment yet – apply a moderation layer in production.

Citation

If you use GemMaroc in your work, please cite:

@misc{abderrahman2025gemmaroc,
  author       = {Skiredj, Abderrahman and Azhari, Ferdaous and Atou, Houdaifa and Tazi, Nouamane and Berrada, Ismail},
  title        = {{GemMaroc: Unlocking Darija Proficiency in LLMs with Minimal Data}},
  year         = {2025},
  publisher    = {Zenodo},
  doi          = {10.5281/zenodo.15492072},
  url          = {https://doi.org/10.5281/zenodo.15492072}
}

Downloads last month
65
Safetensors
Model size
4.3B params
Tensor type
BF16
·
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support

Model tree for GemMaroc/GemMaroc-4b-deita

Finetuned
(521)
this model

Dataset used to train GemMaroc/GemMaroc-4b-deita