AbderrahmanSkiredj1 commited on
Commit
cfddba2
·
verified ·
1 Parent(s): f2564d1

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +103 -151
README.md CHANGED
@@ -1,6 +1,17 @@
1
  ---
2
  library_name: transformers
3
- tags: []
 
 
 
 
 
 
 
 
 
 
 
4
  ---
5
 
6
  # Model Card for Model ID
@@ -8,192 +19,133 @@ tags: []
8
  <!-- Provide a quick summary of what the model is/does. -->
9
 
10
 
 
11
 
12
- ## Model Details
13
 
14
- ### Model Description
15
-
16
- <!-- Provide a longer summary of what this model is. -->
17
-
18
- This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
19
-
20
- - **Developed by:** [More Information Needed]
21
- - **Funded by [optional]:** [More Information Needed]
22
- - **Shared by [optional]:** [More Information Needed]
23
- - **Model type:** [More Information Needed]
24
- - **Language(s) (NLP):** [More Information Needed]
25
- - **License:** [More Information Needed]
26
- - **Finetuned from model [optional]:** [More Information Needed]
27
-
28
- ### Model Sources [optional]
29
-
30
- <!-- Provide the basic links for the model. -->
31
-
32
- - **Repository:** [More Information Needed]
33
- - **Paper [optional]:** [More Information Needed]
34
- - **Demo [optional]:** [More Information Needed]
35
-
36
- ## Uses
37
-
38
- <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
-
40
- ### Direct Use
41
-
42
- <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
-
44
- [More Information Needed]
45
-
46
- ### Downstream Use [optional]
47
-
48
- <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
-
50
- [More Information Needed]
51
-
52
- ### Out-of-Scope Use
53
-
54
- <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
-
56
- [More Information Needed]
57
-
58
- ## Bias, Risks, and Limitations
59
-
60
- <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
-
62
- [More Information Needed]
63
-
64
- ### Recommendations
65
-
66
- <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
-
68
- Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
-
70
- ## How to Get Started with the Model
71
-
72
- Use the code below to get started with the model.
73
-
74
- [More Information Needed]
75
-
76
- ## Training Details
77
-
78
- ### Training Data
79
-
80
- <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
-
82
- [More Information Needed]
83
-
84
- ### Training Procedure
85
-
86
- <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
-
88
- #### Preprocessing [optional]
89
-
90
- [More Information Needed]
91
-
92
-
93
- #### Training Hyperparameters
94
-
95
- - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
-
97
- #### Speeds, Sizes, Times [optional]
98
-
99
- <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
-
101
- [More Information Needed]
102
-
103
- ## Evaluation
104
-
105
- <!-- This section describes the evaluation protocols and provides the results. -->
106
-
107
- ### Testing Data, Factors & Metrics
108
-
109
- #### Testing Data
110
-
111
- <!-- This should link to a Dataset Card if possible. -->
112
-
113
- [More Information Needed]
114
-
115
- #### Factors
116
-
117
- <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
-
119
- [More Information Needed]
120
-
121
- #### Metrics
122
-
123
- <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
 
125
- [More Information Needed]
126
 
127
- ### Results
 
 
 
 
 
 
 
 
 
128
 
129
- [More Information Needed]
130
 
131
- #### Summary
132
 
 
 
 
133
 
 
134
 
135
- ## Model Examination [optional]
136
 
137
- <!-- Relevant interpretability work for the model goes here -->
 
 
 
138
 
139
- [More Information Needed]
140
 
141
- ## Environmental Impact
142
 
143
- <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
 
145
- Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
 
146
 
147
- - **Hardware Type:** [More Information Needed]
148
- - **Hours used:** [More Information Needed]
149
- - **Cloud Provider:** [More Information Needed]
150
- - **Compute Region:** [More Information Needed]
151
- - **Carbon Emitted:** [More Information Needed]
152
 
153
- ## Technical Specifications [optional]
 
 
 
 
 
154
 
155
- ### Model Architecture and Objective
 
 
 
 
 
 
 
 
 
156
 
157
- [More Information Needed]
 
 
158
 
159
- ### Compute Infrastructure
 
 
160
 
161
- [More Information Needed]
162
 
163
- #### Hardware
164
 
165
- [More Information Needed]
 
 
 
 
166
 
167
- #### Software
168
 
169
- [More Information Needed]
 
 
170
 
171
- ## Citation [optional]
172
 
173
- <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
 
175
- **BibTeX:**
176
 
177
- [More Information Needed]
178
 
179
- **APA:**
180
 
181
- [More Information Needed]
 
 
182
 
183
- ## Glossary [optional]
184
 
185
- <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
 
187
- [More Information Needed]
 
 
 
188
 
189
- ## More Information [optional]
190
 
191
- [More Information Needed]
192
 
193
- ## Model Card Authors [optional]
194
 
195
- [More Information Needed]
 
 
 
 
 
 
 
 
196
 
197
- ## Model Card Contact
198
 
199
- [More Information Needed]
 
1
  ---
2
  library_name: transformers
3
+ tags:
4
+ - MoroccanArabic
5
+ - Darija
6
+ - GemMaroc
7
+ datasets:
8
+ - GemMaroc/TULU-3-50k-darija-english
9
+ language:
10
+ - ar
11
+ - ary
12
+ - en
13
+ base_model:
14
+ - google/gemma-3-27b-it
15
  ---
16
 
17
  # Model Card for Model ID
 
19
  <!-- Provide a quick summary of what the model is/does. -->
20
 
21
 
22
+ # GemMaroc‑27B
23
 
24
+ Unlocking **Moroccan Darija** proficiency in a state‑of‑the‑art large language model, trained with a *minimal‑data, green‑AI* recipe that preserves Gemma‑27B’s strong reasoning abilities while adding fluent Darija generation.
25
 
26
+ ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
27
 
28
+ ## Model at a glance
29
 
30
+ | | Details |
31
+ | ------------------- | ----------------------------------------------------------------------------------------------------------------------------- |
32
+ | **Model ID** | `AbderrahmanSkiredj1/GemMaroc-27b-it` |
33
+ | **Base model** | [`google/gemma-3-27b`](https://huggingface.co/google/gemma-3-27b) |
34
+ | **Architecture** | Decoder‑only Transformer (Gemma 3) |
35
+ | **Parameters** | 27 billion |
36
+ | **Context length** | 2 048 tokens |
37
+ | **Training regime** | Supervised fine‑tuning (LoRA → merged) on 50 K high‑quality Darija/English instructions TULU‑50K slice |
38
+ | **Compute budget** | 48 GPU·h (8 × H100‑80GB × 6 h) – ≈ 26 kWh / 10 kg CO₂e |
39
+ | **License** | Apache 2.0 |
40
 
41
+ ---
42
 
43
+ ## Why another Darija model?
44
 
45
+ * **Inclusive AI** > 36 million speakers of Moroccan Arabic remain underserved by open LLMs.
46
+ * **Quality‑over‑quantity** A carefully curated 50 K instruction set surfaces Darija competence without sacrificing cross‑lingual reasoning.
47
+ * **Green AI** GemMaroc achieves Atlas‑Chat‑level Darija scores using < 2 % of the energy.
48
 
49
+ ---
50
 
51
+ ## Benchmark summary
52
 
53
+ | Model | Darija MMLU | Darija HellaSwag | GSM8K @5 | HellaSwag (EN) |
54
+ | ---------------- | ----------- | ---------------- | ---------- | -------------- |
55
+ | Atlas‑Chat‑27B | **61.9 %** | 48.4 % | 82.0 % | 77.8 % |
56
+ | **GemMaroc‑27B** | 61.6 % | **60.5 %** | **84.2 %** | **79.3 %** |
57
 
58
+ <sub>Zero‑shot accuracy; full table in the paper.</sub>
59
 
60
+ ---
61
 
62
+ ## Quick start
63
 
64
+ ```python
65
+ from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline
66
 
67
+ model_id = "AbderrahmanSkiredj1/GemMaroc-27b-it"
 
 
 
 
68
 
69
+ tokenizer = AutoTokenizer.from_pretrained(model_id)
70
+ model = AutoModelForCausalLM.from_pretrained(
71
+ model_id,
72
+ torch_dtype="auto",
73
+ device_map="auto"
74
+ )
75
 
76
+ pipe = pipeline(
77
+ "text-generation",
78
+ model=model,
79
+ tokenizer=tokenizer,
80
+ device_map="auto",
81
+ max_new_tokens=1024,
82
+ temperature=0.7,
83
+ repetition_penalty=1.2,
84
+ no_repeat_ngram_size=3,
85
+ )
86
 
87
+ messages = [
88
+ {"role": "user", "content": "شنو هي نظرية ‘butterfly effect’؟ فسّرها بدارجة ونقّط مثال بسيط."}
89
+ ]
90
 
91
+ prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
92
+ print(pipe(prompt)[0]["generated_text"][len(prompt):])
93
+ ```
94
 
95
+ ### Chat template (Gemma 3 format)
96
 
97
+ The tokenizer provides a baked‑in Jinja template that starts with a **begin‑of‑sequence** token (`<bos>`), then alternates user/model turns, each wrapped by `<start_of_turn>` … `<end_of_turn>` markers. When you set `add_generation_prompt=True` it ends after the opening model tag so the model can continue:
98
 
99
+ ```
100
+ <bos><start_of_turn>user
101
+ {user message}<end_of_turn>
102
+ <start_of_turn>model
103
+ ```
104
 
105
+ The assistant will keep generating tokens until it decides to emit `<end_of_turn>`.
106
 
107
+ ```python
108
+ prompt = tokenizer.apply_chat_template(messages, add_generation_prompt=True, tokenize=False)
109
+ ```
110
 
111
+ No manual token juggling required—the call above handles BOS, turn delimiters, and newline placement automatically.
112
 
113
+ ---
114
 
115
+ Pre‑quantised checkpoints will be published under the same repo tags (`gemmaroc‑27b‑awq‑int4`, `gemmaroc‑27b‑gguf‑q4_k_m`).
116
 
117
+ ---
118
 
119
+ ## Training recipe (one‑paragraph recap)
120
 
121
+ 1. **Data** Translate a 44 K reasoning slice of TULU 50K into Darija, keeping 20 % English for cross‑lingual robustness.
122
+ 2. **LoRA SFT** Rank 16, α = 32, 3 epochs, bf16, context 2 048.
123
+ 3. **Merge & push** Merge LoRA into base weights (`peft.merge_and_unload`), convert to safetensors, upload.
124
 
125
+ ---
126
 
127
+ ## Limitations & ethical considerations
128
 
129
+ * Sentiment and abstractive summarisation still trail state‑of‑the‑art.
130
+ * Tokeniser is unchanged; rare Darija spellings may fragment.
131
+ * Model may inherit societal biases present in pre‑training data.
132
+ * No RLHF / RLAIF safety alignment yet – apply a moderation layer in production.
133
 
134
+ ---
135
 
136
+ ## Citation
137
 
138
+ If you use GemMaroc in your work, please cite:
139
 
140
+ ```bibtex
141
+ @misc{abderrahman2025gemmaroc,
142
+ author = {Skiredj, Abderrahman and Azhari, Ferdaous and Atou, Houdaifa and Tazi, Nouamane and Berrada, Ismail},
143
+ title = {{GemMaroc: Unlocking Darija Proficiency in LLMs with Minimal Data}},
144
+ year = {2025},
145
+ publisher = {Zenodo},
146
+ doi = {10.5281/zenodo.15492072},
147
+ url = {https://doi.org/10.5281/zenodo.15492072}
148
+ }
149
 
 
150
 
151
+ ```