MiniChat-2-3B

📑 arXiv | 👻 GitHub | 🤗 HuggingFace-MiniMA | 🤗 HuggingFace-MiniChat | 🤖 ModelScope-MiniMA | 🤖 ModelScope-MiniChat | 🤗 HuggingFace-MiniChat-1.5 | 🤗 HuggingFace-MiniMA-2 | 🤗 HuggingFace-MiniChat-2

🆕 Updates from MiniChat-3B:

  • better base model MiniMA-2-3B;
  • better data mixture;
  • use of NEFTune;
  • use of DPO.

❗ Must comply with LICENSE of LLaMA2 since it is derived from LLaMA2.

A language model continued from MiniMA-3B and finetuned on both instruction and preference data.

Surpassing Vicuna-7B and approximating LLaMA-2-Chat-7B on MT-Bench.

teaser_b

Standard Benchmarks

Method TFLOPs MMLU (5-shot) CEval (5-shot) DROP (3-shot) HumanEval (0-shot) BBH (3-shot) GSM8K (8-shot)
Mamba-2.8B 4.6E9 25.58 24.74 15.72 7.32 29.37 3.49
ShearedLLaMA-2.7B 0.8E9 26.97 22.88 19.98 4.88 30.48 3.56
BTLM-3B 11.3E9 27.20 26.00 17.84 10.98 30.87 4.55
StableLM-3B 72.0E9 44.75 31.05 22.35 15.85 32.59 10.99
Qwen-1.8B 23.8E9 44.05 54.75 12.97 14.02 30.80 22.97
Phi-2-2.8B 159.9E9 56.74 34.03 30.74 46.95 44.13 55.42
LLaMA-2-7B 84.0E9 46.00 34.40 31.57 12.80 32.02 14.10
MiniMA-3B 4.0E9 28.51 28.23 22.50 10.98 31.61 8.11
MiniChat-3B 4.0E9 38.40 36.48 22.58 18.29 31.36 29.72
MiniMA-2-3B 13.4E9 40.14 44.65 23.10 14.63 31.43 8.87
MiniChat-2-3B 13.4E9 46.17 43.91 30.26 22.56 34.95 38.13

Instruction-following Benchmarks

Method AlpacaEval MT-Bench MT-Bench-ZH
GPT-4 95.28 9.18 8.96
Zephyr-7B-Beta 90.60 7.34 6.27#
Vicuna-7B 76.84 6.17 5.22#
LLaMA-2-Chat-7B 71.37 6.27 5.43#
Qwen-Chat-7B - - 6.24
Phi-2-DPO 81.37 - 1.59#$
StableLM-Zephyr-3B 76.00 6.64 4.31#
Rocket-3B 79.75 6.56 4.07#
Qwen-Chat-1.8B - - 5.65
MiniChat-3B 48.82 - -
MiniChat-2-3B 77.30 6.23 6.04

# specialized mainly for English.

$ finetuned without multi-turn instruction data.

The following is an example code snippet to use MiniChat-2-3B:

import torch

from transformers import AutoModelForCausalLM, AutoTokenizer

from conversation import get_default_conv_template

# MiniChat
tokenizer = AutoTokenizer.from_pretrained("GeneZC/MiniChat-2-3B", use_fast=False)
# GPU.
model = AutoModelForCausalLM.from_pretrained("GeneZC/MiniChat-2-3B", use_cache=True, device_map="auto", torch_dtype=torch.float16).eval()
# CPU.
# model = AutoModelForCausalLM.from_pretrained("GeneZC/MiniChat-2-3B", use_cache=True, device_map="cpu", torch_dtype=torch.float16).eval()

conv = get_default_conv_template("minichat")

question = "Implement a program to find the common elements in two arrays without using any extra data structures."
conv.append_message(conv.roles[0], question)
conv.append_message(conv.roles[1], None)
prompt = conv.get_prompt()
input_ids = tokenizer([prompt]).input_ids
output_ids = model.generate(
    torch.as_tensor(input_ids).cuda(),
    do_sample=True,
    temperature=0.7,
    max_new_tokens=1024,
)
output_ids = output_ids[0][len(input_ids[0]):]
output = tokenizer.decode(output_ids, skip_special_tokens=True).strip()
# output: "def common_elements(arr1, arr2):\n    if len(arr1) == 0:\n        return []\n    if len(arr2) == 0:\n        return arr1\n\n    common_elements = []\n    for element in arr1:\n        if element in arr2:\n            common_elements.append(element)\n\n    return common_elements"
# Multiturn conversation could be realized by continuously appending questions to `conv`.

Bibtex

@article{zhang2023law,
    title={Towards the Law of Capacity Gap in Distilling Language Models},
    author={Zhang, Chen and Song, Dawei and Ye, Zheyu and Gao, Yan},
    year={2023},
    url={https://arxiv.org/abs/2311.07052}
}

Open LLM Leaderboard Evaluation Results

Detailed results can be found here

Metric Value
Avg. 51.49
AI2 Reasoning Challenge (25-Shot) 44.88
HellaSwag (10-Shot) 67.69
MMLU (5-Shot) 47.59
TruthfulQA (0-shot) 49.64
Winogrande (5-shot) 66.46
GSM8k (5-shot) 32.68
Downloads last month
3,190
Safetensors
Model size
3.02B params
Tensor type
BF16
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for GeneZC/MiniChat-2-3B

Adapters
2 models
Finetunes
8 models
Quantizations
4 models

Spaces using GeneZC/MiniChat-2-3B 4

Collection including GeneZC/MiniChat-2-3B

Evaluation results