File size: 5,852 Bytes
7f88419 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 |
---
datasets:
- GetSoloTech/Code-Reasoning
base_model:
- GetSoloTech/Gemma3-Code-Reasoning-4B
pipeline_tag: text-generation
tags:
- coding
- reasoning
- problem-solving
- algorithms
- python
- c++
- code-reasoning
- competitive-programming
---
# Gemma3-Code-Reasoning-4B-GGUF
This repository contains GGUF (GGML Universal Format) quantized versions of the [GetSoloTech/Gemma3-Code-Reasoning-4B](https://huggingface.co/GetSoloTech/Gemma3-Code-Reasoning-4B) model, optimized for local inference with various quantization levels to balance performance and resource usage.
## π― Model Overview
This is a **LoRA-finetuned** version of `gemma-3-4b-it` specifically optimized for competitive programming and code reasoning tasks. The model has been trained on the high-quality Code-Reasoning dataset to enhance its capabilities in solving complex programming problems with detailed reasoning.
## π Key Features
- **Enhanced Code Reasoning**: Specifically trained on competitive programming problems
- **Thinking Capabilities**: Inherits the advanced reasoning capabilities from the base model
- **High-Quality Solutions**: Trained on solutions with β₯85% test case pass rates
- **Structured Output**: Optimized for generating well-reasoned programming solutions
- **Efficient Training**: Uses LoRA adapters for efficient parameter updates
- **Multiple Quantization Levels**: Available in various GGUF formats for different hardware capabilities
## π Available GGUF Models
| Model File | Size | Quantization | Use Case |
|------------|------|--------------|----------|
| `Gemma3-Code-Reasoning-4B.f16.gguf` | 7.77 GB | FP16 | Highest quality, requires more VRAM |
| `Gemma3-Code-Reasoning-4B.Q8_0.gguf` | 4.13 GB | Q8_0 | High quality, good balance |
| `Gemma3-Code-Reasoning-4B.Q6_K.gguf` | 3.19 GB | Q6_K | Good quality, moderate VRAM usage |
| `Gemma3-Code-Reasoning-4B.Q5_K_M.gguf` | 2.83 GB | Q5_K_M | Balanced quality and size |
| `Gemma3-Code-Reasoning-4B.Q4_K_M.gguf` | 2.49 GB | Q4_K_M | Good compression, reasonable quality |
| `Gemma3-Code-Reasoning-4B.Q3_K_M.gguf` | 2.1 GB | Q3_K_M | Smaller size, moderate quality |
| `Gemma3-Code-Reasoning-4B.Q2_K.gguf` | 1.73 GB | Q2_K | Smallest size, basic quality |
| `Gemma3-Code-Reasoning-4B.IQ4_XS.gguf` | 2.28 GB | IQ4_XS | Intel optimized, good quality |
## π§ Usage
### Using with llama.cpp
```bash
# Download a GGUF model file
wget https://huggingface.co/GetSoloTech/Gemma3-Code-Reasoning-4B-GGUF/resolve/main/Gemma3-Code-Reasoning-4B.Q4_K_M.gguf
# Run inference with llama.cpp
./llama.cpp/main -m Gemma3-Code-Reasoning-4B.Q4_K_M.gguf -n 4096 --repeat_penalty 1.1 -p "You are an expert competitive programmer. Solve this problem: [YOUR_PROBLEM_HERE]"
```
### Using with Python (llama-cpp-python)
```python
from llama_cpp import Llama
# Load the model
llm = Llama(
model_path="./Gemma3-Code-Reasoning-4B.Q4_K_M.gguf",
n_ctx=4096,
n_threads=4
)
# Prepare the prompt
prompt = """You are an expert competitive programmer. Read the problem and produce a correct, efficient solution. Include reasoning if helpful.
Problem: [YOUR_PROGRAMMING_PROBLEM_HERE]
Solution:"""
# Generate response
output = llm(
prompt,
max_tokens=4096,
temperature=1.0,
top_p=0.95,
top_k=64,
repeat_penalty=1.1
)
print(output['choices'][0]['text'])
```
## ποΈ Recommended Settings
- **Temperature**: 1.0
- **Top-p**: 0.95
- **Top-k**: 64
- **Max New Tokens**: 4096 (adjust based on problem complexity)
- **Repeat Penalty**: 1.1
## π» Hardware Requirements
| Quantization | Minimum VRAM | Recommended VRAM | CPU RAM |
|--------------|--------------|------------------|---------|
| FP16 | 8 GB | 12 GB | 16 GB |
| Q8_0 | 5 GB | 8 GB | 12 GB |
| Q6_K | 4 GB | 6 GB | 10 GB |
| Q5_K_M | 3 GB | 5 GB | 8 GB |
| Q4_K_M | 3 GB | 4 GB | 6 GB |
| Q3_K_M | 2 GB | 3 GB | 4 GB |
| Q2_K | 2 GB | 2 GB | 3 GB |
| IQ4_XS | 3 GB | 4 GB | 6 GB |
## π Performance Expectations
This finetuned model is expected to show improved performance on:
- **Competitive Programming Problems**: Better understanding of problem constraints and requirements
- **Code Generation**: More accurate and efficient solutions
- **Reasoning Quality**: Enhanced step-by-step reasoning for complex problems
- **Solution Completeness**: More comprehensive solutions with proper edge case handling
## π Related Resources
- **Base Model**: [GetSoloTech/Gemma3-Code-Reasoning-4B](https://huggingface.co/GetSoloTech/Gemma3-Code-Reasoning-4B)
- **Training Dataset**: [GetSoloTech/Code-Reasoning](https://huggingface.co/datasets/GetSoloTech/Code-Reasoning)
- **Original Gemma Model**: [google/gemma-3-4b-it](https://huggingface.co/google/gemma-3-4b-it)
- **llama.cpp**: [GitHub Repository](https://github.com/ggerganov/llama.cpp)
- **llama-cpp-python**: [PyPI Package](https://pypi.org/project/llama-cpp-python/)
## π€ Contributing
This model was created using the Unsloth framework and the Code-Reasoning dataset. For questions about:
- The base model: [Gemma3 Huggingface](https://huggingface.co/google/gemma-3-4b-it)
- The training dataset: [Code-Reasoning Repository](https://huggingface.co/datasets/GetSoloTech/Code-Reasoning)
- The training framework: [Unsloth Documentation](https://github.com/unslothai/unsloth)
## π Acknowledgments
- **Gemma Team** for the excellent base model
- **Unsloth Team** for the efficient training framework
- **NVIDIA Research** for the original OpenCodeReasoning-2 dataset
- **llama.cpp community** for the GGUF format and tools
## π Contact
For questions about this GGUF converted model, please open an issue in the repository.
---
**Note**: This model is specifically optimized for competitive programming and code reasoning tasks. Choose the appropriate quantization level based on your hardware capabilities and quality requirements. |