|
|
--- |
|
|
license: apache-2.0 |
|
|
tags: |
|
|
- automatic-speech-recognition |
|
|
- fi |
|
|
- finnish |
|
|
library_name: transformers |
|
|
language: fi |
|
|
base_model: |
|
|
- GetmanY1/wav2vec2-large-fi-150k |
|
|
model-index: |
|
|
- name: wav2vec2-large-fi-150k-finetuned |
|
|
results: |
|
|
- task: |
|
|
name: Automatic Speech Recognition |
|
|
type: automatic-speech-recognition |
|
|
dataset: |
|
|
name: Lahjoita puhetta (Donate Speech) |
|
|
type: lahjoita-puhetta |
|
|
args: fi |
|
|
metrics: |
|
|
- name: Dev WER |
|
|
type: wer |
|
|
value: 15.34 |
|
|
- name: Dev CER |
|
|
type: cer |
|
|
value: 4.14 |
|
|
- name: Test WER |
|
|
type: wer |
|
|
value: 16.86 |
|
|
- name: Test CER |
|
|
type: cer |
|
|
value: 5.07 |
|
|
- task: |
|
|
name: Automatic Speech Recognition |
|
|
type: automatic-speech-recognition |
|
|
dataset: |
|
|
name: Finnish Parliament |
|
|
type: FinParl |
|
|
args: fi |
|
|
metrics: |
|
|
- name: Dev16 WER |
|
|
type: wer |
|
|
value: 11.3 |
|
|
- name: Dev16 CER |
|
|
type: cer |
|
|
value: 4.75 |
|
|
- name: Test16 WER |
|
|
type: wer |
|
|
value: 8.29 |
|
|
- name: Test16 CER |
|
|
type: cer |
|
|
value: 3.34 |
|
|
- name: Test20 WER |
|
|
type: wer |
|
|
value: 6.94 |
|
|
- name: Test20 CER |
|
|
type: cer |
|
|
value: 2.15 |
|
|
- task: |
|
|
name: Automatic Speech Recognition |
|
|
type: automatic-speech-recognition |
|
|
dataset: |
|
|
name: Common Voice 16.1 |
|
|
type: mozilla-foundation/common_voice_16_1 |
|
|
args: fi |
|
|
metrics: |
|
|
- name: Dev WER |
|
|
type: wer |
|
|
value: 7.17 |
|
|
- name: Dev CER |
|
|
type: cer |
|
|
value: 1.11 |
|
|
- name: Test WER |
|
|
type: wer |
|
|
value: 5.86 |
|
|
- name: Test CER |
|
|
type: cer |
|
|
value: 0.91 |
|
|
- task: |
|
|
name: Automatic Speech Recognition |
|
|
type: automatic-speech-recognition |
|
|
dataset: |
|
|
name: FLEURS |
|
|
type: google/fleurs |
|
|
args: fi_fi |
|
|
metrics: |
|
|
- name: Dev WER |
|
|
type: wer |
|
|
value: 9.2 |
|
|
- name: Dev CER |
|
|
type: cer |
|
|
value: 5.23 |
|
|
- name: Test WER |
|
|
type: wer |
|
|
value: 10.69 |
|
|
- name: Test CER |
|
|
type: cer |
|
|
value: 5.79 |
|
|
--- |
|
|
|
|
|
# Finnish Wav2vec2-Large ASR |
|
|
|
|
|
[GetmanY1/wav2vec2-large-fi-150k](https://huggingface.co/GetmanY1/wav2vec2-large-fi-150k) fine-tuned on 4600 hours of Finnish speech on 16kHz sampled speech audio: |
|
|
* 1500 hours of [Lahjoita puhetta (Donate Speech)](https://link.springer.com/article/10.1007/s10579-022-09606-3) (colloquial Finnish) |
|
|
* 3100 hours of the [Finnish Parliament dataset](https://link.springer.com/article/10.1007/s10579-023-09650-7) |
|
|
|
|
|
When using the model make sure that your speech input is also sampled at 16Khz. |
|
|
|
|
|
## Model description |
|
|
|
|
|
The Finnish Wav2Vec2 Large has the same architecture and uses the same training objective as the English and multilingual one described in [Paper](https://arxiv.org/abs/2006.11477). |
|
|
|
|
|
[GetmanY1/wav2vec2-large-fi-150k](https://huggingface.co/GetmanY1/wav2vec2-large-fi-150k) is a large-scale, 317-million parameter monolingual model pre-trained on 158k hours of unlabeled Finnish speech, including [KAVI radio and television archive materials](https://kavi.fi/en/radio-ja-televisioarkistointia-vuodesta-2008/), Lahjoita puhetta (Donate Speech), Finnish Parliament, Finnish VoxPopuli. |
|
|
|
|
|
You can read more about the pre-trained model from [this paper](https://www.isca-archive.org/interspeech_2025/getman25_interspeech.html). The training scripts are available on [GitHub](https://github.com/aalto-speech/large-scale-monolingual-speech-foundation-models). |
|
|
|
|
|
## Intended uses |
|
|
|
|
|
You can use this model for Finnish ASR (speech-to-text). |
|
|
|
|
|
### How to use |
|
|
|
|
|
To transcribe audio files the model can be used as a standalone acoustic model as follows: |
|
|
|
|
|
``` |
|
|
from transformers import Wav2Vec2Processor, Wav2Vec2ForCTC |
|
|
from datasets import load_dataset |
|
|
import torch |
|
|
|
|
|
# load model and processor |
|
|
processor = Wav2Vec2Processor.from_pretrained("GetmanY1/wav2vec2-large-fi-150k-finetuned") |
|
|
model = Wav2Vec2ForCTC.from_pretrained("GetmanY1/wav2vec2-large-fi-150k-finetuned") |
|
|
|
|
|
# load dummy dataset and read soundfiles |
|
|
ds = load_dataset("mozilla-foundation/common_voice_16_1", "fi", split='test') |
|
|
|
|
|
# tokenize |
|
|
input_values = processor(ds[0]["audio"]["array"], return_tensors="pt", padding="longest").input_values # Batch size 1 |
|
|
|
|
|
# retrieve logits |
|
|
logits = model(input_values).logits |
|
|
|
|
|
# take argmax and decode |
|
|
predicted_ids = torch.argmax(logits, dim=-1) |
|
|
transcription = processor.batch_decode(predicted_ids) |
|
|
``` |
|
|
|
|
|
## Citation |
|
|
|
|
|
If you use our models or scripts, please cite our article as: |
|
|
|
|
|
```bibtex |
|
|
@inproceedings{getman25_interspeech, |
|
|
title = {{Is your model big enough? Training and interpreting large-scale monolingual speech foundation models}}, |
|
|
author = {{Yaroslav Getman and Tamás Grósz and Tommi Lehtonen and Mikko Kurimo}}, |
|
|
year = {{2025}}, |
|
|
booktitle = {{Interspeech 2025}}, |
|
|
pages = {{231--235}}, |
|
|
doi = {{10.21437/Interspeech.2025-46}}, |
|
|
issn = {{2958-1796}}, |
|
|
} |
|
|
``` |
|
|
|
|
|
## Team Members |
|
|
|
|
|
- Yaroslav Getman, [Hugging Face profile](https://huggingface.co/GetmanY1), [LinkedIn profile](https://www.linkedin.com/in/yaroslav-getman/) |
|
|
- Tamas Grosz, [Hugging Face profile](https://huggingface.co/Grosy), [LinkedIn profile](https://www.linkedin.com/in/tam%C3%A1s-gr%C3%B3sz-950a049a/) |
|
|
|
|
|
Feel free to contact us for more details 🤗 |