Gille's picture
Update README.md
d4afbe8 verified
---
license: apache-2.0
tags:
- merge
- mergekit
- lazymergekit
- macadeliccc/WestLake-7B-v2-laser-truthy-dpo
- kaitchup/Mayonnaise-4in1-022
base_model:
- macadeliccc/WestLake-7B-v2-laser-truthy-dpo
- kaitchup/Mayonnaise-4in1-022
---
# StrangeMerges_6-7B-dare_ties
StrangeMerges_6-7B-dare_ties is a merge of the following models using [LazyMergekit](https://colab.research.google.com/drive/1obulZ1ROXHjYLn6PPZJwRR6GzgQogxxb?usp=sharing):
* [macadeliccc/WestLake-7B-v2-laser-truthy-dpo](https://huggingface.co/macadeliccc/WestLake-7B-v2-laser-truthy-dpo)
* [kaitchup/Mayonnaise-4in1-022](https://huggingface.co/kaitchup/Mayonnaise-4in1-022)
## 🧩 Configuration
```yaml
models:
- model: Gille/StrangeMerges_5-7B-ties
# no parameters necessary for base model
- model: macadeliccc/WestLake-7B-v2-laser-truthy-dpo
parameters:
density: 0.5
weight: 0.4
- model: kaitchup/Mayonnaise-4in1-022
parameters:
density: 0.5
weight: 0.5
merge_method: dare_ties
base_model: Gille/StrangeMerges_5-7B-ties
parameters:
normalize: true
dtype: float16
```
## 💻 Usage
```python
!pip install -qU transformers accelerate
from transformers import AutoTokenizer
import transformers
import torch
model = "Gille/StrangeMerges_6-7B-dare_ties"
messages = [{"role": "user", "content": "What is a large language model?"}]
tokenizer = AutoTokenizer.from_pretrained(model)
prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
pipeline = transformers.pipeline(
"text-generation",
model=model,
torch_dtype=torch.float16,
device_map="auto",
)
outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
print(outputs[0]["generated_text"])
```