SetFit with BAAI/bge-small-en-v1.5
This is a SetFit model that can be used for Text Classification. This SetFit model uses BAAI/bge-small-en-v1.5 as the Sentence Transformer embedding model. A LogisticRegression instance is used for classification.
The model has been trained using an efficient few-shot learning technique that involves:
- Fine-tuning a Sentence Transformer with contrastive learning.
- Training a classification head with features from the fine-tuned Sentence Transformer.
Model Details
Model Description
- Model Type: SetFit
- Sentence Transformer body: BAAI/bge-small-en-v1.5
- Classification head: a LogisticRegression instance
- Maximum Sequence Length: 512 tokens
- Number of Classes: 2 classes
Model Sources
- Repository: SetFit on GitHub
- Paper: Efficient Few-Shot Learning Without Prompts
- Blogpost: SetFit: Efficient Few-Shot Learning Without Prompts
Model Labels
Label | Examples |
---|---|
0 |
|
1 |
|
Evaluation
Metrics
Label | Accuracy |
---|---|
all | 1.0 |
Uses
Direct Use for Inference
First install the SetFit library:
pip install setfit
Then you can load this model and run inference.
from setfit import SetFitModel
# Download from the 🤗 Hub
model = SetFitModel.from_pretrained("Gopal2002/COAL_INVOICE_ZEON")
# Run inference
preds = model("UNITED MEDICAL STORE Patient Name: KASTURI uENA
‘EW MARKET, C/O PRAFULLA KUMAR JENA
HIRAKUD. SAMBALPUR. Dr. Name :
Medicine Advice Slip: MA/2223/0668 “
Phone :0663-2431670 Prescription Indent:M/2223/06299
DL No. :SAWZ 486 R/487 RC Invoice No. ; 0002785 Date : 21/11/2022
Se|__Qiy. [Pack [Product “Batch [Exp] HSN [ MRP | Table | Dis [5051] CO3i] Amount |
1. 30 TAB] 30'S TELMA H TAB 11/24 | 30049099; 484.00! 432.14 0.001 6.00
NEOPRIDE TOTAL CAP 7/24 30049099) 445.00) 0,00; 6.00
SUB TOTAL :
SGST
er rH 2 ROFF :
— ha GRAND TOTAL
Te & Con itions For UNITED MEDICAL STORE R a ah
BILL GRAND TOTAL IS CALCULATED ACCORDING TO 1D- 3306 Im- 1220
MRP PRICE ( INCLUDING ALL GST TAXES ) Q _ 06 (ped)
")
Training Details
Training Set Metrics
Training set | Min | Median | Max |
---|---|---|---|
Word count | 1 | 270.5442 | 4241 |
Label | Training Sample Count |
---|---|
0 | 130 |
1 | 85 |
Training Hyperparameters
- batch_size: (32, 32)
- num_epochs: (2, 2)
- max_steps: -1
- sampling_strategy: oversampling
- body_learning_rate: (2e-05, 1e-05)
- head_learning_rate: 0.01
- loss: CosineSimilarityLoss
- distance_metric: cosine_distance
- margin: 0.25
- end_to_end: False
- use_amp: False
- warmup_proportion: 0.1
- seed: 42
- eval_max_steps: -1
- load_best_model_at_end: False
Training Results
Epoch | Step | Training Loss | Validation Loss |
---|---|---|---|
0.0013 | 1 | 0.2394 | - |
0.0657 | 50 | 0.1203 | - |
0.1314 | 100 | 0.0095 | - |
0.1971 | 150 | 0.0029 | - |
0.2628 | 200 | 0.0014 | - |
0.3285 | 250 | 0.0014 | - |
0.3942 | 300 | 0.0011 | - |
0.4599 | 350 | 0.0009 | - |
0.5256 | 400 | 0.0008 | - |
0.5913 | 450 | 0.0007 | - |
0.6570 | 500 | 0.0008 | - |
0.7227 | 550 | 0.0008 | - |
0.7884 | 600 | 0.0006 | - |
0.8541 | 650 | 0.0005 | - |
0.9198 | 700 | 0.0004 | - |
0.9855 | 750 | 0.0005 | - |
1.0512 | 800 | 0.0004 | - |
1.1170 | 850 | 0.0005 | - |
1.1827 | 900 | 0.0004 | - |
1.2484 | 950 | 0.0004 | - |
1.3141 | 1000 | 0.0003 | - |
1.3798 | 1050 | 0.0004 | - |
1.4455 | 1100 | 0.0004 | - |
1.5112 | 1150 | 0.0004 | - |
1.5769 | 1200 | 0.0005 | - |
1.6426 | 1250 | 0.0004 | - |
1.7083 | 1300 | 0.0003 | - |
1.7740 | 1350 | 0.0004 | - |
1.8397 | 1400 | 0.0005 | - |
1.9054 | 1450 | 0.0004 | - |
1.9711 | 1500 | 0.0003 | - |
Framework Versions
- Python: 3.10.12
- SetFit: 1.0.3
- Sentence Transformers: 2.2.2
- Transformers: 4.35.2
- PyTorch: 2.1.0+cu121
- Datasets: 2.16.1
- Tokenizers: 0.15.0
Citation
BibTeX
@article{https://doi.org/10.48550/arxiv.2209.11055,
doi = {10.48550/ARXIV.2209.11055},
url = {https://arxiv.org/abs/2209.11055},
author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
title = {Efficient Few-Shot Learning Without Prompts},
publisher = {arXiv},
year = {2022},
copyright = {Creative Commons Attribution 4.0 International}
}
- Downloads last month
- 3
Inference Providers
NEW
This model is not currently available via any of the supported third-party Inference Providers, and
the model is not deployed on the HF Inference API.
Model tree for Gopal2002/COAL_INVOICE_ZEON
Base model
BAAI/bge-small-en-v1.5