SetFit with BAAI/bge-small-en-v1.5
This is a SetFit model that can be used for Text Classification. This SetFit model uses BAAI/bge-small-en-v1.5 as the Sentence Transformer embedding model. A LogisticRegression instance is used for classification.
The model has been trained using an efficient few-shot learning technique that involves:
- Fine-tuning a Sentence Transformer with contrastive learning.
- Training a classification head with features from the fine-tuned Sentence Transformer.
Model Details
Model Description
- Model Type: SetFit
- Sentence Transformer body: BAAI/bge-small-en-v1.5
- Classification head: a LogisticRegression instance
- Maximum Sequence Length: 512 tokens
- Number of Classes: 3 classes
Model Sources
- Repository: SetFit on GitHub
- Paper: Efficient Few-Shot Learning Without Prompts
- Blogpost: SetFit: Efficient Few-Shot Learning Without Prompts
Model Labels
Label | Examples |
---|---|
2 |
|
1 |
|
0 |
|
Evaluation
Metrics
Label | Accuracy |
---|---|
all | 1.0 |
Uses
Direct Use for Inference
First install the SetFit library:
pip install setfit
Then you can load this model and run inference.
from setfit import SetFitModel
# Download from the 🤗 Hub
model = SetFitModel.from_pretrained("Gopal2002/SERVICE_ZEON")
# Run inference
preds = model("ci lll ll Me
sy sa
< : Chet > 24.09 2? Lib Gs)
CTS 25M AS ow
pind
eo, YERIPHERLAL— —Sigh\
ATE. OUST EER ING re: vw
a cerpuer a Wa,
76.09.19 02 ym f tauren aoe ae ay Mi hid i c o) + :
f 24-09 «19 O° wo. “do -— mae oD wie - Ae 2 AC
” . a pie 1ay 4 qT
ie Oi. SOEs = = ple ak nyse a
29-09: 190 2W - ~ as 20 -¥. 44 oF ww +r An as
reearccene to 4. we Xs OL Ke get oe
HOt XK. 49 e cal de my.440 ini ed
o2xX 19.0 2mm “Ar a. gx. 440 De fe le ot
sy eam Pot A le eggoem po
0A. X. 2 Ale. Sa Wid ’ elt
o4 ‘4 0 2mm — 4: joe OR AA WE ay ea si
if c es
Hae.. 44 OL Wun.
( for.y. 14 0 2am. t
—4
Ae —4
a a QC
ope HOt wep A !
oq ke $4 0 2 Wh to —4e
40x. 44 © Lm qt ~—Ae Ye
15 xX a 0 7, WH “-
Lhe
|
&
4 1 A
6 &
\ \ yy
SA Lho®
i
a=
Ge
‘Q
“,
|
")
Training Details
Training Set Metrics
Training set | Min | Median | Max |
---|---|---|---|
Word count | 2 | 284.6628 | 699 |
Label | Training Sample Count |
---|---|
0 | 30 |
1 | 24 |
2 | 32 |
Training Hyperparameters
- batch_size: (32, 32)
- num_epochs: (2, 2)
- max_steps: -1
- sampling_strategy: oversampling
- body_learning_rate: (2e-05, 1e-05)
- head_learning_rate: 0.01
- loss: CosineSimilarityLoss
- distance_metric: cosine_distance
- margin: 0.25
- end_to_end: False
- use_amp: False
- warmup_proportion: 0.1
- seed: 42
- eval_max_steps: -1
- load_best_model_at_end: False
Training Results
Epoch | Step | Training Loss | Validation Loss |
---|---|---|---|
0.0065 | 1 | 0.2818 | - |
0.3268 | 50 | 0.0374 | - |
0.6536 | 100 | 0.0053 | - |
0.9804 | 150 | 0.003 | - |
1.3072 | 200 | 0.0028 | - |
1.6340 | 250 | 0.0029 | - |
1.9608 | 300 | 0.0032 | - |
Framework Versions
- Python: 3.10.12
- SetFit: 1.0.3
- Sentence Transformers: 2.2.2
- Transformers: 4.35.2
- PyTorch: 2.1.0+cu121
- Datasets: 2.16.1
- Tokenizers: 0.15.0
Citation
BibTeX
@article{https://doi.org/10.48550/arxiv.2209.11055,
doi = {10.48550/ARXIV.2209.11055},
url = {https://arxiv.org/abs/2209.11055},
author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
title = {Efficient Few-Shot Learning Without Prompts},
publisher = {arXiv},
year = {2022},
copyright = {Creative Commons Attribution 4.0 International}
}
- Downloads last month
- 3
Inference Providers
NEW
This model is not currently available via any of the supported third-party Inference Providers, and
the model is not deployed on the HF Inference API.
Model tree for Gopal2002/SERVICE_ZEON
Base model
BAAI/bge-small-en-v1.5