Model Card for Qwen3-32B-LoRA-ECHO-KK-GRPO
Based on Qwen3-32B, we applied the ECHO framework to perform LoRA fine-tuning on the KK dataset. Ultimately, it achieved near-perfect scores on the 2โ8 PPL test set, surpassing o4-mini, DeepSeek-R1, and o3-mini-high.
Tabel 3: Model performance on K&K logic puzzle task across different degrees of difficulty
model | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
---|---|---|---|---|---|---|---|
Qwen3-32B | 0.98 | 0.99 | 0.98 | 0.99 | 0.98 | 0.96 | 0.95 |
Deepseek-R1 | 1.00 | 0.97 | 0.95 | 0.93 | 0.91 | 0.93 | 0.91 |
o3-mini-high | 1.00 | 1.00 | 1.00 | 1.00 | 0.99 | 0.98 | 0.98 |
o4-mini | 1.00 | 1.00 | 0.96 | 0.94 | 0.97 | 0.93 | 0.87 |
Qwen3-32B-Echo(GRPO w/Lora) | 0.99 | 1.00 | 1.00 | 1.00 | 0.99 | 1.00 | 0.99 |
Quick start
from transformers import AutoModelForCausalLM, AutoTokenizer
model_name = "GradientResearch/Qwen3-32B-LoRA-ECHO-KK-GRPO"# load the tokenizer and the model
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(
model_name,
torch_dtype="auto",
device_map="auto"
)
# prepare the model input
prompt = "K & K"
messages = [
{"role": "user", "content": prompt}
]
text = tokenizer.apply_chat_template(
messages,
tokenize=False,
add_generation_prompt=True,
enable_thinking=True # Switches between thinking and non-thinking modes. Default is True.
)
model_inputs = tokenizer([text], return_tensors="pt").to(model.device)
# conduct text completion
generated_ids = model.generate(
**model_inputs,
max_new_tokens=32768
)
output_ids = generated_ids[0][len(model_inputs.input_ids[0]):].tolist()
# parsing thinking contenttry:
# rindex finding 151668 (</think>)
index = len(output_ids) - output_ids[::-1].index(151668)
except ValueError:
index = 0
thinking_content = tokenizer.decode(output_ids[:index], skip_special_tokens=True).strip("\n")
content = tokenizer.decode(output_ids[index:], skip_special_tokens=True).strip("\n")
print("thinking content:", thinking_content)
print("content:", content)
Citation
If you find our work helpful, feel free to give us a cite.
@misc{xiao2025echodecouplinginferencetraining,
title={Echo: Decoupling Inference and Training for Large-Scale RL Alignment on Heterogeneous Swarms},
author={Jie Xiao and Changyuan Fan and Qingnan Ren and Alfred Long and Yuchen Zhang and Rymon Yu and Eric Yang and Lynn Ai and Shaoduo Gan},
year={2025},
eprint={2508.05387},
archivePrefix={arXiv},
primaryClass={cs.LG},
url={https://arxiv.org/abs/2508.05387},
}
- Downloads last month
- 8
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support