See axolotl config
axolotl version: 0.9.2
base_model: Qwen/Qwen3-8B
datasets:
- path: GusPuffy/syvai-reasoning-gen-v2
type: chat_template
field_messages: messages
roles_to_train: ["assistant"]
load_in_8bit: false
load_in_4bit: true
strict: false
dataset_prepared_path: last_run_prepared
val_set_size: 0.02
output_dir: ./outputs/out
sequence_len: 8192
sample_packing: true
pad_to_sequence_len: true
adapter: qlora
lora_model_dir:
lora_r: 32
lora_alpha: 64
lora_dropout: 0.1
lora_target_linear: true
wandb_project: reasoning-gen
wandb_entity:
wandb_watch:
wandb_name:
wandb_log_model:
gradient_accumulation_steps: 8
micro_batch_size: 1
num_epochs: 1
optimizer: adamw_torch_fused
lr_scheduler: cosine
learning_rate: 2e-5
bf16: auto
tf32: true
gradient_checkpointing: true
gradient_checkpointing_kwargs:
use_reentrant: false
resume_from_checkpoint:
logging_steps: 1
flash_attention: true
warmup_steps: 100
evals_per_epoch: 2
saves_per_epoch: 1
weight_decay: 0.0
special_tokens:
fsdp:
- full_shard
- auto_wrap
fsdp_config:
fsdp_limit_all_gathers: true
fsdp_sync_module_states: true
fsdp_offload_params: true
fsdp_use_orig_params: false
fsdp_cpu_ram_efficient_loading: true
fsdp_auto_wrap_policy: TRANSFORMER_BASED_WRAP
fsdp_transformer_layer_cls_to_wrap: Qwen3DecoderLayer
fsdp_state_dict_type: FULL_STATE_DICT
fsdp_sharding_strategy: FULL_SHARD
outputs/out
This model is a fine-tuned version of Qwen/Qwen3-8B on the GusPuffy/syvai-reasoning-gen-v2 dataset. It achieves the following results on the evaluation set:
- Loss: 1.2201
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 1
- eval_batch_size: 1
- seed: 42
- distributed_type: multi-GPU
- num_devices: 4
- gradient_accumulation_steps: 8
- total_train_batch_size: 32
- total_eval_batch_size: 4
- optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 100
- num_epochs: 1.0
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
0.8758 | 0.0011 | 1 | 1.5860 |
0.6286 | 0.5004 | 452 | 1.2201 |
Framework versions
- PEFT 0.15.2
- Transformers 4.51.3
- Pytorch 2.8.0.dev20250519+cu128
- Datasets 3.5.1
- Tokenizers 0.21.1
- Downloads last month
- 0
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
🙋
Ask for provider support