SentenceTransformer based on sentence-transformers/LaBSE
This is a sentence-transformers model finetuned from sentence-transformers/LaBSE. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: sentence-transformers/LaBSE
- Maximum Sequence Length: 256 tokens
- Output Dimensionality: 768 dimensions
- Similarity Function: Cosine Similarity
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 256, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Dense({'in_features': 768, 'out_features': 768, 'bias': True, 'activation_function': 'torch.nn.modules.activation.Tanh'})
(3): Normalize()
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("sentence_transformers_model_id")
# Run inference
sentences = [
'ӈэнчьачакыгэт, ӈэнчьачакэттомгын',
'Младшая сестра',
'наконечник гарпуна',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Training Details
Training Dataset
Unnamed Dataset
- Size: 69,231 training samples
- Columns:
sentence_0
,sentence_1
, andlabel
- Approximate statistics based on the first 1000 samples:
sentence_0 sentence_1 label type string string float details - min: 3 tokens
- mean: 9.36 tokens
- max: 93 tokens
- min: 3 tokens
- mean: 10.03 tokens
- max: 97 tokens
- min: 1.0
- mean: 1.0
- max: 1.0
- Samples:
sentence_0 sentence_1 label ныкынмаԓьав
стремящийся быть вместе, неразлучный
1.0
Овчелгымоллымол
Темнокрасная кровь
1.0
Ӈаанракэн ыпычьын кытыԓьын
Того дома основа крепкая
1.0
- Loss:
MultipleNegativesRankingLoss
with these parameters:{ "scale": 20.0, "similarity_fct": "cos_sim" }
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy
: stepsnum_train_epochs
: 1fp16
: Truemulti_dataset_batch_sampler
: round_robin
All Hyperparameters
Click to expand
overwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: stepsprediction_loss_only
: Trueper_device_train_batch_size
: 8per_device_eval_batch_size
: 8per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 1eval_accumulation_steps
: Nonetorch_empty_cache_steps
: Nonelearning_rate
: 5e-05weight_decay
: 0.0adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1num_train_epochs
: 1max_steps
: -1lr_scheduler_type
: linearlr_scheduler_kwargs
: {}warmup_ratio
: 0.0warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Falsefp16
: Truefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Nonelocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 0dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Falseignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torchoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Nonehub_always_push
: Falsegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseinclude_for_metrics
: []eval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falseeval_on_start
: Falseuse_liger_kernel
: Falseeval_use_gather_object
: Falseaverage_tokens_across_devices
: Falseprompts
: Nonebatch_sampler
: batch_samplermulti_dataset_batch_sampler
: round_robin
Training Logs
Epoch | Step | Training Loss |
---|---|---|
0.0116 | 100 | - |
0.0231 | 200 | - |
0.0347 | 300 | - |
0.0462 | 400 | - |
0.0578 | 500 | 1.6601 |
0.0693 | 600 | - |
0.0809 | 700 | - |
0.0924 | 800 | - |
0.1040 | 900 | - |
0.1156 | 1000 | 1.1117 |
0.1271 | 1100 | - |
0.1387 | 1200 | - |
0.1502 | 1300 | - |
0.1618 | 1400 | - |
0.1733 | 1500 | 1.0037 |
0.1849 | 1600 | - |
0.1964 | 1700 | - |
0.2080 | 1800 | - |
0.2196 | 1900 | - |
0.2311 | 2000 | 0.9463 |
0.2427 | 2100 | - |
0.2542 | 2200 | - |
0.2658 | 2300 | - |
0.2773 | 2400 | - |
0.2889 | 2500 | 0.9152 |
0.3004 | 2600 | - |
0.3120 | 2700 | - |
0.3235 | 2800 | - |
0.3351 | 2900 | - |
0.3467 | 3000 | 0.8957 |
0.3582 | 3100 | - |
0.3698 | 3200 | - |
0.3813 | 3300 | - |
0.3929 | 3400 | - |
0.4044 | 3500 | 0.8696 |
0.4160 | 3600 | - |
0.4275 | 3700 | - |
0.4391 | 3800 | - |
0.4507 | 3900 | - |
0.4622 | 4000 | 0.8815 |
0.4738 | 4100 | - |
0.4853 | 4200 | - |
0.4969 | 4300 | - |
0.5084 | 4400 | - |
0.5200 | 4500 | 0.8265 |
0.5315 | 4600 | - |
0.5431 | 4700 | - |
0.5547 | 4800 | - |
0.5662 | 4900 | - |
0.5778 | 5000 | 0.8057 |
0.5893 | 5100 | - |
0.6009 | 5200 | - |
0.6124 | 5300 | - |
0.6240 | 5400 | - |
0.6355 | 5500 | 0.7754 |
0.6471 | 5600 | - |
0.6587 | 5700 | - |
0.6702 | 5800 | - |
0.6818 | 5900 | - |
0.6933 | 6000 | 0.8078 |
0.7049 | 6100 | - |
0.7164 | 6200 | - |
0.7280 | 6300 | - |
0.7395 | 6400 | - |
0.7511 | 6500 | 0.7371 |
0.7627 | 6600 | - |
0.7742 | 6700 | - |
0.7858 | 6800 | - |
0.7973 | 6900 | - |
0.8089 | 7000 | 0.7199 |
0.8204 | 7100 | - |
0.8320 | 7200 | - |
0.8435 | 7300 | - |
0.8551 | 7400 | - |
0.8667 | 7500 | 0.7494 |
0.8782 | 7600 | - |
0.8898 | 7700 | - |
0.9013 | 7800 | - |
0.9129 | 7900 | - |
0.9244 | 8000 | 0.7481 |
0.9360 | 8100 | - |
0.9475 | 8200 | - |
0.9591 | 8300 | - |
0.9706 | 8400 | - |
0.9822 | 8500 | 0.7768 |
0.9938 | 8600 | - |
1.0 | 8654 | - |
Framework Versions
- Python: 3.11.12
- Sentence Transformers: 4.1.0
- Transformers: 4.52.2
- PyTorch: 2.6.0+cu124
- Accelerate: 1.7.0
- Datasets: 2.14.4
- Tokenizers: 0.21.1
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
MultipleNegativesRankingLoss
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
- Downloads last month
- 9
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
🙋
Ask for provider support
Model tree for HSE-Chukchi-NLP/LaBSE-russian-chukchi
Base model
sentence-transformers/LaBSE