HaithemH's picture
Upload gradio_demo.py with huggingface_hub
cb75925 verified
import os
import cv2
import time
import torch
import random
import gradio as gr
import numpy as np
from loguru import logger
from transformers import VJEPA2ForVideoClassification, AutoVideoProcessor
# Config
CHECKPOINT = "HaithemH/vjepa2-vitl-fpc16-256-ssv2-66K-220cat"
TORCH_DTYPE = torch.float16
TORCH_DEVICE = "cuda:4" # Change if needed
UPDATE_EVERY_N_FRAMES = 16
HF_TOKEN = os.getenv("HF_TOKEN")
# Load model & processor
model = VJEPA2ForVideoClassification.from_pretrained(CHECKPOINT, torch_dtype=torch.bfloat16)
model = model.to(TORCH_DEVICE)
video_processor = AutoVideoProcessor.from_pretrained(CHECKPOINT)
frames_per_clip = model.config.frames_per_clip
def add_text_on_image(image, text):
image[:70] = 0
line_spacing = 10
top_margin = 20
font = cv2.FONT_HERSHEY_SIMPLEX
font_scale = 0.5
thickness = 1
color = (255, 255, 255)
words = text.split()
lines = []
current_line = ""
img_width = image.shape[1]
for word in words:
test_line = current_line + (" " if current_line else "") + word
(test_width, _), _ = cv2.getTextSize(test_line, font, font_scale, thickness)
if test_width > img_width - 20:
lines.append(current_line)
current_line = word
else:
current_line = test_line
if current_line:
lines.append(current_line)
y = top_margin
for line in lines:
(line_width, line_height), _ = cv2.getTextSize(line, font, font_scale, thickness)
x = (img_width - line_width) // 2
cv2.putText(image, line, (x, y + line_height), font, font_scale, color, thickness, cv2.LINE_AA)
y += line_height + line_spacing
return image
class RunningFramesCache:
def __init__(self, max_frames=16):
self.max_frames = max_frames
self._frames = []
self.counter = 0
def add_frame(self, frame):
self.counter += 1
self._frames.append(frame)
if len(self._frames) > self.max_frames:
self._frames.pop(0)
def get_last_n_frames(self, n):
return self._frames[-n:]
def __len__(self):
return len(self._frames)
class RunningResult:
def __init__(self, max_predictions=4):
self.predictions = []
self.max_predictions = max_predictions
def add_prediction(self, prediction):
current_time = time.strftime("%H:%M:%S", time.gmtime(time.time()))
self.predictions.append((current_time, prediction))
if len(self.predictions) > self.max_predictions:
self.predictions.pop(0)
def get_formatted(self):
if not self.predictions:
return "Starting..."
current, *past = self.predictions[::-1]
text = f">>> {current[1]}\n\n" + "\n".join(
f"[{time_str}] {pred}" for time_str, pred in past
)
return text
def get_last(self):
return self.predictions[-1][1] if self.predictions else "Starting..."
# Shared state
frames_cache = RunningFramesCache(max_frames=frames_per_clip)
results_cache = RunningResult()
def classify_frame(image):
image = cv2.flip(image, 1) # mirror webcam
frames_cache.add_frame(image)
if frames_cache.counter % UPDATE_EVERY_N_FRAMES == 0 and len(frames_cache) >= frames_per_clip:
frames = frames_cache.get_last_n_frames(frames_per_clip)
frames = np.array(frames)
inputs = video_processor(frames, device=TORCH_DEVICE, return_tensors="pt")
inputs = inputs.to(dtype=TORCH_DTYPE)
with torch.no_grad():
logits = model(**inputs).logits
top_idx = logits.argmax(dim=-1).item()
class_name = model.config.id2label[top_idx]
logger.info(f"Predicted: {class_name}")
results_cache.add_prediction(class_name)
annotated_image = add_text_on_image(image.copy(), results_cache.get_last())
return annotated_image, results_cache.get_formatted()
# Gradio UI
demo = gr.Interface(
fn=classify_frame,
inputs=gr.Image(sources=["webcam"], streaming=True),
outputs=[
gr.Image(label="Live Prediction", type="numpy"),
gr.TextArea(label="Recent Predictions", lines=10),
],
live=True,
title="V-JEPA 2: Streaming Video Action Recognition - SSV2",
description="This demo showcases a specialized version of V-JEPA 2, fine-tuned for real-time video action recognition!",
)
if __name__ == "__main__":
demo.launch(share=True)