HammaLoRACAMeLBert

Advanced Arabic Dialect Classification Model with Complete Training Metrics

Training Metrics

Full Training History

epoch train_loss eval_loss train_accuracy eval_accuracy f1 precision recall
1 1.37716 1.3692 0.53022 0.531461 0.473072 0.541513 0.53022
2 1.07614 1.06994 0.624063 0.636517 0.613924 0.630747 0.624063
3 0.968308 0.956658 0.662962 0.675281 0.661112 0.674352 0.662962
4 0.908012 0.900243 0.680569 0.692697 0.67889 0.688134 0.680569
5 0.858731 0.850955 0.699051 0.711236 0.70055 0.711083 0.699051
6 0.83265 0.825597 0.708417 0.716854 0.709791 0.724241 0.708417
7 0.796107 0.792507 0.722777 0.727528 0.723871 0.733254 0.722777
8 0.774045 0.773437 0.729645 0.732584 0.732394 0.747566 0.729645
9 0.758434 0.762295 0.736763 0.737079 0.739592 0.753967 0.736763
10 0.74339 0.7477 0.743194 0.744382 0.74493 0.757555 0.743194
11 0.730814 0.737005 0.74975 0.748876 0.751424 0.760475 0.74975
12 0.731264 0.74201 0.747378 0.748315 0.749058 0.760792 0.747378
13 0.719465 0.729863 0.753184 0.750562 0.754813 0.765065 0.753184
14 0.71225 0.722574 0.756868 0.754494 0.758437 0.767501 0.756868
15 0.712998 0.724446 0.756244 0.755618 0.757984 0.767426 0.756244

Label Mapping:

{0: 'Egypt', 1: 'Iraq', 2: 'Lebanon', 3: 'Morocco', 4: 'Saudi_Arabia', 5: 'Sudan', 6: 'Tunisia'}

USAGE Example:

from transformers import pipeline

classifier = pipeline(
    "text-classification",
    model="Hamma-16/HammaLoRACAMeLBert",
    device="cuda" if torch.cuda.is_available() else "cpu"
)

sample_text = "ุดู„ูˆู†ูƒ ุงู„ูŠูˆู…ุŸ"
result = classifier(sample_text)
print(f"Text: {sample_text}")
print(f"Predicted: {result[0]['label']} (confidence: {result[0]['score']:.1%})")
Downloads last month
15
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Model tree for Hamma-16/HammaLoRACAMeLBERT-v1

Adapter
(3)
this model