HammaLoRAMarBert

Advanced Arabic Dialect Classification Model with Complete Training Metrics

Training Metrics

Full Training History

epoch train_loss eval_loss train_accuracy eval_accuracy f1 precision recall
1 1.23777 1.22883 0.696741 0.706742 0.679064 0.704547 0.696741
2 0.740169 0.733708 0.790397 0.800562 0.791608 0.797789 0.790397
3 0.601572 0.617834 0.818182 0.821348 0.819564 0.824729 0.818182
4 0.562756 0.585901 0.824363 0.816292 0.825464 0.835567 0.824363
5 0.497183 0.534541 0.839411 0.832022 0.839956 0.842141 0.839411
6 0.467484 0.529349 0.848964 0.830899 0.850348 0.855113 0.848964
7 0.447877 0.52692 0.851773 0.832022 0.852826 0.857268 0.851773
8 0.44038 0.525875 0.854021 0.830337 0.855092 0.860913 0.854021
9 0.416875 0.513681 0.863886 0.835955 0.865207 0.870201 0.863886
10 0.397198 0.498091 0.868506 0.839888 0.869502 0.872867 0.868506
11 0.396181 0.509205 0.86757 0.835955 0.869238 0.875968 0.86757
12 0.38368 0.494237 0.873064 0.838764 0.87361 0.875448 0.873064
13 0.377543 0.496908 0.874001 0.83764 0.874749 0.877947 0.874001
14 0.371016 0.491708 0.877435 0.841573 0.878057 0.880101 0.877435
15 0.370049 0.493832 0.877872 0.840449 0.878651 0.881198 0.877872

Label Mapping:

{0: 'Egypt', 1: 'Iraq', 2: 'Lebanon', 3: 'Morocco', 4: 'Saudi_Arabia', 5: 'Sudan', 6: 'Tunisia'}

USAGE Example:

from transformers import pipeline

classifier = pipeline(
    "text-classification",
    model="Hamma-16/HammaLoRAMarBert",
    device="cuda" if torch.cuda.is_available() else "cpu"
)

sample_text = "ุดู„ูˆู†ูƒ ุงู„ูŠูˆู…ุŸ"
result = classifier(sample_text)
print(f"Text: {sample_text}")
print(f"Predicted: {result[0]['label']} (confidence: {result[0]['score']:.1%})")
Downloads last month
27
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Model tree for Hamma-16/HammaLoRAMarBERT-v1

Base model

UBC-NLP/MARBERT
Adapter
(3)
this model