HammaLoRAMarBert

Advanced Arabic Dialect Classification Model with Complete Training Metrics

Training Metrics

Full Training History

epoch train_loss eval_loss train_accuracy eval_accuracy f1 precision recall
1 1.51721 1.50726 0.670392 0.685955 0.647908 0.695828 0.670392
2 0.827407 0.804686 0.779283 0.790449 0.779526 0.787574 0.779283
3 0.624589 0.617633 0.815747 0.823596 0.815815 0.818754 0.815747
4 0.577044 0.593563 0.822927 0.821348 0.824907 0.835161 0.822927
5 0.504094 0.535676 0.839036 0.834831 0.839583 0.842469 0.839036
6 0.46799 0.520281 0.849213 0.835955 0.850536 0.855303 0.849213
7 0.445317 0.510596 0.854708 0.840449 0.855552 0.858046 0.854708
8 0.428012 0.501261 0.858142 0.842135 0.859003 0.862191 0.858142
9 0.412287 0.491676 0.864635 0.848315 0.865268 0.868648 0.864635
10 0.400929 0.497091 0.868194 0.847753 0.8693 0.872337 0.868194
11 0.395328 0.506237 0.868319 0.840449 0.870433 0.87781 0.868319
12 0.378038 0.483877 0.874813 0.847191 0.875232 0.877259 0.874813
13 0.3727 0.488525 0.874313 0.841573 0.875207 0.878724 0.874313
14 0.366197 0.482607 0.878059 0.85 0.878635 0.880364 0.878059
15 0.365844 0.485294 0.878247 0.851124 0.879 0.88123 0.878247

Label Mapping:

{0: 'Egypt', 1: 'Iraq', 2: 'Lebanon', 3: 'Morocco', 4: 'Saudi_Arabia', 5: 'Sudan', 6: 'Tunisia'}

USAGE Example:

from transformers import pipeline

classifier = pipeline(
    "text-classification",
    model="Hamma-16/HammaLoRAMarBert",
    device="cuda" if torch.cuda.is_available() else "cpu"
)

sample_text = "ุดู„ูˆู†ูƒ ุงู„ูŠูˆู…ุŸ"
result = classifier(sample_text)
print(f"Text: {sample_text}")
print(f"Predicted: {result[0]['label']} (confidence: {result[0]['score']:.1%})")
Downloads last month
30
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Model tree for Hamma-16/HammaLoRAMarBERT-v2

Base model

UBC-NLP/MARBERT
Adapter
(3)
this model