es_ar

This model is a fine-tuned version of facebook/wav2vec2-xls-r-300m on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.4940
  • Wer: 0.3263
  • Cer: 0.2414

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0003
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • num_epochs: 15.0
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer Cer
3.6158 0.4 500 3.7004 0.9886 0.9625
1.0731 0.8 1000 1.0090 0.7501 0.4066
0.7529 1.2 1500 0.7609 0.6195 0.3460
0.6441 1.6 2000 0.6322 0.5524 0.3171
0.607 2.0 2500 0.5795 0.5202 0.3065
0.4744 2.4 3000 0.5848 0.5096 0.3056
0.4604 2.8 3500 0.5341 0.4666 0.2907
0.3763 3.2 4000 0.5060 0.4416 0.2812
0.3952 3.6 4500 0.5214 0.4566 0.2850
0.3962 4.0 5000 0.4890 0.4324 0.2784
0.3137 4.4 5500 0.4833 0.4165 0.2713
0.316 4.8 6000 0.5005 0.4182 0.2738
0.2721 5.2 6500 0.4961 0.4171 0.2732
0.2561 5.6 7000 0.4742 0.3997 0.2645
0.2854 6.0 7500 0.4600 0.3991 0.2662
0.2599 6.4 8000 0.4541 0.4022 0.2659
0.2249 6.8 8500 0.4586 0.3911 0.2615
0.1931 7.2 9000 0.4721 0.3871 0.2614
0.195 7.6 9500 0.4636 0.3898 0.2608
0.1991 8.0 10000 0.4259 0.3716 0.2555
0.1657 8.4 10500 0.4548 0.3714 0.2573
0.1802 8.8 11000 0.4540 0.3582 0.2526
0.1359 9.2 11500 0.4685 0.3652 0.2552
0.1419 9.6 12000 0.4524 0.3561 0.2512
0.1531 10.0 12500 0.4443 0.3578 0.2514
0.1313 10.4 13000 0.4536 0.3536 0.2495
0.1269 10.8 13500 0.4563 0.3517 0.2480
0.102 11.2 14000 0.4606 0.3424 0.2476
0.103 11.6 14500 0.4611 0.3489 0.2477
0.1088 12.0 15000 0.4505 0.3362 0.2447
0.0917 12.4 15500 0.4741 0.3404 0.2458
0.0847 12.8 16000 0.4714 0.3340 0.2440
0.0768 13.2 16500 0.4943 0.3286 0.2427
0.0789 13.6 17000 0.4813 0.3308 0.2429
0.0797 14.0 17500 0.4861 0.3288 0.2423
0.0698 14.4 18000 0.5003 0.3271 0.2416
0.0686 14.8 18500 0.4940 0.3263 0.2414

Framework versions

  • Transformers 4.36.2
  • Pytorch 1.13.0+cu116
  • Datasets 2.15.0
  • Tokenizers 0.15.2
Downloads last month
2
Safetensors
Model size
316M params
Tensor type
F32
ยท
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Model tree for Hellina/es_ar

Finetuned
(713)
this model