es_xh

This model is a fine-tuned version of facebook/wav2vec2-xls-r-300m on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.5893
  • Wer: 0.5947
  • Cer: 0.4759

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0003
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 1000
  • num_epochs: 15.0
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer Cer
13.2606 0.4 500 3.9328 1.0 0.9985
3.2356 0.8 1000 1.7868 1.1103 0.7647
1.3553 1.2 1500 0.9949 0.9400 0.6160
1.0288 1.6 2000 0.8121 0.8587 0.5799
0.912 2.0 2500 0.7674 0.8885 0.5624
0.7449 2.4 3000 0.7171 0.8139 0.5611
0.6755 2.8 3500 0.6477 0.7770 0.5350
0.5974 3.2 4000 0.6217 0.7566 0.5268
0.5474 3.6 4500 0.6131 0.7395 0.5221
0.5241 4.0 5000 0.6161 0.7428 0.5269
0.4447 4.4 5500 0.5790 0.6977 0.5110
0.434 4.8 6000 0.5889 0.7103 0.5119
0.3912 5.2 6500 0.5804 0.6916 0.5095
0.3572 5.6 7000 0.5728 0.6997 0.5099
0.3546 6.0 7500 0.5640 0.6845 0.5070
0.2939 6.4 8000 0.5703 0.6677 0.4988
0.2884 6.8 8500 0.5500 0.6618 0.5000
0.2636 7.2 9000 0.5548 0.6534 0.4963
0.246 7.6 9500 0.5447 0.6437 0.4945
0.2358 8.0 10000 0.5480 0.6485 0.4945
0.2012 8.4 10500 0.5476 0.6447 0.4921
0.2038 8.8 11000 0.5590 0.6481 0.4935
0.1833 9.2 11500 0.5820 0.6435 0.4921
0.1695 9.6 12000 0.5649 0.6294 0.4902
0.1649 10.0 12500 0.5663 0.6255 0.4874
0.1382 10.4 13000 0.5676 0.6361 0.4874
0.1387 10.8 13500 0.5940 0.6251 0.4868
0.1252 11.2 14000 0.5833 0.6262 0.4848
0.1146 11.6 14500 0.5669 0.6223 0.4832
0.1119 12.0 15000 0.5697 0.6170 0.4835
0.0968 12.4 15500 0.5893 0.6096 0.4805
0.0929 12.8 16000 0.5790 0.6048 0.4793
0.0891 13.2 16500 0.5916 0.6018 0.4786
0.0784 13.6 17000 0.5921 0.6008 0.4771
0.079 14.0 17500 0.5918 0.5952 0.4761
0.07 14.4 18000 0.5930 0.5944 0.4761
0.0688 14.8 18500 0.5893 0.5947 0.4759

Framework versions

  • Transformers 4.36.2
  • Pytorch 1.13.0+cu116
  • Datasets 2.15.0
  • Tokenizers 0.15.2
Downloads last month
3
Safetensors
Model size
316M params
Tensor type
F32
ยท
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Model tree for Hellina/es_xh

Finetuned
(713)
this model