opus-mt-tc-big-fr-zle

Neural machine translation model for translating from French (fr) to East Slavic languages (zle).

This model is part of the OPUS-MT project, an effort to make neural machine translation models widely available and accessible for many languages in the world. All models are originally trained using the amazing framework of Marian NMT, an efficient NMT implementation written in pure C++. The models have been converted to pyTorch using the transformers library by huggingface. Training data is taken from OPUS and training pipelines use the procedures of OPUS-MT-train.

@inproceedings{tiedemann-thottingal-2020-opus,
    title = "{OPUS}-{MT} {--} Building open translation services for the World",
    author = {Tiedemann, J{\"o}rg  and Thottingal, Santhosh},
    booktitle = "Proceedings of the 22nd Annual Conference of the European Association for Machine Translation",
    month = nov,
    year = "2020",
    address = "Lisboa, Portugal",
    publisher = "European Association for Machine Translation",
    url = "https://aclanthology.org/2020.eamt-1.61",
    pages = "479--480",
}

@inproceedings{tiedemann-2020-tatoeba,
    title = "The Tatoeba Translation Challenge {--} Realistic Data Sets for Low Resource and Multilingual {MT}",
    author = {Tiedemann, J{\"o}rg},
    booktitle = "Proceedings of the Fifth Conference on Machine Translation",
    month = nov,
    year = "2020",
    address = "Online",
    publisher = "Association for Computational Linguistics",
    url = "https://aclanthology.org/2020.wmt-1.139",
    pages = "1174--1182",
}

Model info

This is a multilingual translation model with multiple target languages. A sentence initial language token is required in the form of >>id<< (id = valid target language ID), e.g. >>bel<<

Usage

A short example code:

from transformers import MarianMTModel, MarianTokenizer

src_text = [
    ">>rus<< Ils ont acheté un très bon appareil photo.",
    ">>ukr<< Il s'est soudain mis Γ  pleuvoir."
]

model_name = "pytorch-models/opus-mt-tc-big-fr-zle"
tokenizer = MarianTokenizer.from_pretrained(model_name)
model = MarianMTModel.from_pretrained(model_name)
translated = model.generate(**tokenizer(src_text, return_tensors="pt", padding=True))

for t in translated:
    print( tokenizer.decode(t, skip_special_tokens=True) )

# expected output:
#     Они ΠΊΡƒΠΏΠΈΠ»ΠΈ ΠΎΡ‡Π΅Π½ΡŒ Ρ…ΠΎΡ€ΠΎΡˆΡƒΡŽ ΠΊΠ°ΠΌΠ΅Ρ€Ρƒ.
#     Π Π°ΠΏΡ‚ΠΎΠΌ почався Π΄ΠΎΡ‰.

You can also use OPUS-MT models with the transformers pipelines, for example:

from transformers import pipeline
pipe = pipeline("translation", model="Helsinki-NLP/opus-mt-tc-big-fr-zle")
print(pipe(">>rus<< Ils ont acheté un très bon appareil photo."))

# expected output: Они ΠΊΡƒΠΏΠΈΠ»ΠΈ ΠΎΡ‡Π΅Π½ΡŒ Ρ…ΠΎΡ€ΠΎΡˆΡƒΡŽ ΠΊΠ°ΠΌΠ΅Ρ€Ρƒ.

Benchmarks

langpair testset chr-F BLEU #sent #words
fra-bel tatoeba-test-v2021-08-07 0.52711 31.1 283 1703
fra-rus tatoeba-test-v2021-08-07 0.66502 46.1 11490 70123
fra-ukr tatoeba-test-v2021-08-07 0.61860 39.9 10035 54372
fra-rus flores101-devtest 0.54106 25.8 1012 23295
fra-ukr flores101-devtest 0.52733 23.1 1012 22810
fra-rus newstest2012 0.51254 23.1 3003 64790
fra-rus newstest2013 0.52342 24.8 3000 58560

Acknowledgements

The work is supported by the European Language Grid as pilot project 2866, by the FoTran project, funded by the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement No 771113), and the MeMAD project, funded by the European Union’s Horizon 2020 Research and Innovation Programme under grant agreement No 780069. We are also grateful for the generous computational resources and IT infrastructure provided by CSC -- IT Center for Science, Finland.

Model conversion info

  • transformers version: 4.16.2
  • OPUS-MT git hash: 1bdabf7
  • port time: Thu Mar 24 02:05:04 EET 2022
  • port machine: LM0-400-22516.local
Downloads last month
118
Safetensors
Model size
239M params
Tensor type
FP16
Β·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Spaces using Helsinki-NLP/opus-mt-tc-big-fr-zle 7

Evaluation results