|
--- |
|
library_name: transformers |
|
license: apache-2.0 |
|
base_model: allenai/longformer-base-4096 |
|
tags: |
|
- generated_from_trainer |
|
metrics: |
|
- accuracy |
|
- f1 |
|
model-index: |
|
- name: longformer-epidemiology-2epoch |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# longformer-epidemiology-2epoch |
|
|
|
This model is a fine-tuned version of [allenai/longformer-base-4096](https://huggingface.co/allenai/longformer-base-4096) on an unknown dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.6925 |
|
- Accuracy: 0.523 |
|
- F1: 0.3434 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 5e-05 |
|
- train_batch_size: 20 |
|
- eval_batch_size: 20 |
|
- seed: 42 |
|
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments |
|
- lr_scheduler_type: linear |
|
- num_epochs: 2 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |
|
|:-------------:|:------:|:----:|:---------------:|:--------:|:------:| |
|
| 0.7018 | 0.1111 | 50 | 0.7033 | 0.477 | 0.3230 | |
|
| 0.6963 | 0.2222 | 100 | 0.7050 | 0.477 | 0.3230 | |
|
| 0.6963 | 0.3333 | 150 | 0.6921 | 0.523 | 0.3434 | |
|
| 0.694 | 0.4444 | 200 | 0.6921 | 0.523 | 0.3434 | |
|
| 0.7012 | 0.5556 | 250 | 0.6930 | 0.523 | 0.3434 | |
|
| 0.697 | 0.6667 | 300 | 0.6969 | 0.477 | 0.3230 | |
|
| 0.7008 | 0.7778 | 350 | 0.6923 | 0.523 | 0.3434 | |
|
| 0.6944 | 0.8889 | 400 | 0.6924 | 0.523 | 0.3434 | |
|
| 0.6945 | 1.0 | 450 | 0.7039 | 0.477 | 0.3230 | |
|
| 0.6915 | 1.1111 | 500 | 0.6925 | 0.523 | 0.3434 | |
|
| 0.6988 | 1.2222 | 550 | 0.6935 | 0.477 | 0.3230 | |
|
| 0.6927 | 1.3333 | 600 | 0.6950 | 0.477 | 0.3230 | |
|
| 0.6916 | 1.4444 | 650 | 0.6931 | 0.523 | 0.3434 | |
|
| 0.6911 | 1.5556 | 700 | 0.6936 | 0.477 | 0.3230 | |
|
| 0.6969 | 1.6667 | 750 | 0.6977 | 0.477 | 0.3230 | |
|
| 0.6963 | 1.7778 | 800 | 0.6929 | 0.523 | 0.3434 | |
|
| 0.6924 | 1.8889 | 850 | 0.6941 | 0.477 | 0.3230 | |
|
| 0.6945 | 2.0 | 900 | 0.6935 | 0.477 | 0.3230 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.46.0 |
|
- Pytorch 2.4.0+cu121 |
|
- Datasets 2.21.0 |
|
- Tokenizers 0.20.1 |
|
|