File size: 4,718 Bytes
1d50033
f75c568
 
 
 
 
 
 
1d50033
f75c568
1d50033
f75c568
1d50033
f75c568
1d50033
f75c568
1d50033
f75c568
1d50033
f75c568
1d50033
 
f75c568
1d50033
f75c568
 
 
1d50033
f75c568
 
1d50033
f75c568
 
1d50033
f75c568
1d50033
f75c568
1d50033
f75c568
1d50033
f75c568
 
 
 
1d50033
f75c568
 
 
1d50033
f75c568
 
1d50033
f75c568
 
 
 
1d50033
f75c568
1d50033
f75c568
1d50033
f75c568
 
 
1d50033
f75c568
 
1d50033
f75c568
1d50033
f75c568
 
1d50033
f75c568
 
 
 
 
1d50033
f75c568
1d50033
 
f75c568
 
1d50033
f75c568
 
 
1d50033
f75c568
1d50033
f75c568
1d50033
f75c568
1d50033
f75c568
 
 
 
 
 
 
 
1d50033
f75c568
1d50033
f75c568
1d50033
f75c568
 
 
 
 
 
 
 
1d50033
f75c568
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
---
language:
- en
pipeline_tag: image-to-text
inference: false
arxiv: 2304.08485
datasets:
- HuggingFaceH4/llava-instruct-mix-vsft
---
# Model Card

HuggingFaceH4/vsft-llava-1.5-7b-hf-trl is a Vision Language Model, created by performing VSFT on the [llava-hf/llava-1.5-7b-hf](https://huggingface.co/llava-hf/llava-1.5-7b-hf) model

![image/png](https://cdn-uploads.huggingface.co/production/uploads/6200d0a443eb0913fa2df7cc/q5GXv6Om4Hf2n6IB3e7DQ.png)

Below is the model card of Llava model 7b, which is copied from the original Llava model card that you can find [here](https://huggingface.co/liuhaotian/llava-v1.5-13b).

Check out also the Google Colab demo to run Llava on a free-tier Google Colab instance: [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/drive/1qsl6cd2c8gGtEW1xV5io7S8NHh-Cp1TV?usp=sharing)

Or check out our Spaces demo! [![Open in Spaces](https://huggingface.co/datasets/huggingface/badges/resolve/main/open-in-hf-spaces-md-dark.svg)](https://huggingface.co/spaces/llava-hf/llava-4bit)


## Model details

**Model type:**
LLaVA is an open-source chatbot trained by fine-tuning LLaMA/Vicuna on GPT-generated multimodal instruction-following data.
It is an auto-regressive language model, based on the transformer architecture.

**Model date:**
The model was trained on April the 11th 2024

**Example training script**
https://github.com/huggingface/trl/blob/main/examples/scripts/vsft_llava.py

## How to use the model

The model supports multi-image and multi-prompt generation. Meaning that you can pass multiple images in your prompt. Make sure also to follow the correct prompt template (`USER: xxx\nASSISTANT:`) and add the token `<image>` to the location where you want to query images:

### Using `pipeline`:

```python
from transformers import pipeline
from PIL import Image    
import requests

model_id = "llava-hf/llava-1.5-7b-hf"
pipe = pipeline("image-to-text", model=model_id)
url = "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/tasks/ai2d-demo.jpg"

image = Image.open(requests.get(url, stream=True).raw)
prompt = "A chat between a curious user and an artificial intelligence assistant. The assistant gives helpful, detailed, and polite answers to the user's questions. USER: <image>\nWhat does the label 15 represent? (1) lava (2) core (3) tunnel (4) ash cloud\nASSISTANT:"

outputs = pipe(image, prompt=prompt, generate_kwargs={"max_new_tokens": 200})
print(outputs)
>>> {"generated_text": "\nUSER: What does the label 15 represent? (1) lava (2) core (3) tunnel (4) ash cloud\nASSISTANT: Lava"}
```

### Using pure `transformers`:

Below is an example script to run generation in `float16` precision on a GPU device:

```python
import requests
from PIL import Image

import torch
from transformers import AutoProcessor, LlavaForConditionalGeneration

model_id = "HuggingFaceH4/vsft-llava-1.5-7b-hf-trl"

prompt = "A chat between a curious user and an artificial intelligence assistant. The assistant gives helpful, detailed, and polite answers to the user's questions. USER: <image>\nWhat are these?\nASSISTANT:"
image_file = "http://images.cocodataset.org/val2017/000000039769.jpg"

model = LlavaForConditionalGeneration.from_pretrained(
    model_id, 
    torch_dtype=torch.float16, 
    low_cpu_mem_usage=True, 
).to(0)

processor = AutoProcessor.from_pretrained(model_id)


raw_image = Image.open(requests.get(image_file, stream=True).raw)
inputs = processor(prompt, raw_image, return_tensors='pt').to(0, torch.float16)

output = model.generate(**inputs, max_new_tokens=200, do_sample=False)
print(processor.decode(output[0][2:], skip_special_tokens=True))
```

### Model optimization

#### 4-bit quantization through `bitsandbytes` library

First make sure to install `bitsandbytes`, `pip install bitsandbytes` and make sure to have access to a CUDA compatible GPU device. Simply change the snippet above with: 

```diff
model = LlavaForConditionalGeneration.from_pretrained(
    model_id, 
    torch_dtype=torch.float16, 
    low_cpu_mem_usage=True,
+   load_in_4bit=True
)
```

#### Use Flash-Attention 2 to further speed-up generation

First make sure to install `flash-attn`. Refer to the [original repository of Flash Attention](https://github.com/Dao-AILab/flash-attention) regarding that package installation. Simply change the snippet above with: 

```diff
model = LlavaForConditionalGeneration.from_pretrained(
    model_id, 
    torch_dtype=torch.float16, 
    low_cpu_mem_usage=True,
+   use_flash_attention_2=True
).to(0)
```

## License
Llama 2 is licensed under the LLAMA 2 Community License, 
Copyright (c) Meta Platforms, Inc. All Rights Reserved.