fix
Browse filesnot me putting the readme in the commit msg 😅
README.md
CHANGED
@@ -12,4 +12,68 @@ language:
|
|
12 |
- ru
|
13 |
base_model:
|
14 |
- HuggingFaceTB/SmolLM3-3B-Base
|
15 |
-
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
12 |
- ru
|
13 |
base_model:
|
14 |
- HuggingFaceTB/SmolLM3-3B-Base
|
15 |
+
---
|
16 |
+
|
17 |
+
# SmolLM3 Checkpoints
|
18 |
+
|
19 |
+
We are releasing intermediate checkpoints of SmolLM3 to enable further research.
|
20 |
+
|
21 |
+
## Pre-training
|
22 |
+
|
23 |
+
We release checkpoints every 40,000 steps, which equals 94.4B tokens.
|
24 |
+
The GBS (Global Batch Size) in tokens for SmolLM3-3B is 2,359,296. To calculate the number of tokens from a given step:
|
25 |
+
|
26 |
+
```python
|
27 |
+
nb_tokens = nb_step * GBS
|
28 |
+
```
|
29 |
+
|
30 |
+
### Training Stages
|
31 |
+
|
32 |
+
**Stage 1:** Steps 0 to 3,450,000 (86 checkpoints)
|
33 |
+
[config](https://huggingface.co/datasets/HuggingFaceTB/smollm3-configs/blob/main/stage1_8T.yaml)
|
34 |
+
|
35 |
+
**Stage 2:** Steps 3,450,000 to 4,200,000 (19 checkpoints)
|
36 |
+
[config](https://huggingface.co/datasets/HuggingFaceTB/smollm3-configs/blob/main/stage2_8T_9T.yaml)
|
37 |
+
|
38 |
+
**Stage 3:** Steps 4,200,000 to 4,720,000 (13 checkpoints)
|
39 |
+
[config](https://huggingface.co/datasets/HuggingFaceTB/smollm3-configs/blob/main/stage3_9T_11T.yaml)
|
40 |
+
|
41 |
+

|
42 |
+
|
43 |
+
### Long Context Extension
|
44 |
+
|
45 |
+
For the additional 2 stages that extend the context length to 64k, we sample checkpoints every 4,000 steps (9.4B tokens) for a total of 10 checkpoints:
|
46 |
+
|
47 |
+
**Long Context 4k to 32k**
|
48 |
+
[config](https://huggingface.co/datasets/HuggingFaceTB/smollm3-configs/blob/main/long_context_4k_to_32k.yaml)
|
49 |
+
|
50 |
+
**Long Context 32k to 64k**
|
51 |
+
[config](https://huggingface.co/datasets/HuggingFaceTB/smollm3-configs/blob/main/long_context_32k_to_64k.yaml)
|
52 |
+
|
53 |
+

|
54 |
+
|
55 |
+
## Post-training
|
56 |
+
|
57 |
+
We release checkpoints at every step of our post-training recipe: Mid training, SFT, APO soup, and LC expert.
|
58 |
+
|
59 |
+

|
60 |
+
|
61 |
+
## How to Load a Checkpoint
|
62 |
+
|
63 |
+
```python
|
64 |
+
# pip install transformers
|
65 |
+
import torch
|
66 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
67 |
+
checkpoint = "HuggingFaceTB/SmolLM3-3B-checkpoints"
|
68 |
+
revision = "stage1-step-40000" # replace by the revision you want
|
69 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "mps" if hasattr(torch, 'mps') and torch.mps.is_available() else "cpu")
|
70 |
+
tokenizer = AutoTokenizer.from_pretrained(checkpoint, revision=revision)
|
71 |
+
model = AutoModelForCausalLM.from_pretrained(checkpoint, revision=revision).to(device)
|
72 |
+
inputs = tokenizer.encode("Gravity is", return_tensors="pt").to(device)
|
73 |
+
outputs = model.generate(inputs)
|
74 |
+
print(tokenizer.decode(outputs[0]))
|
75 |
+
```
|
76 |
+
|
77 |
+
## License
|
78 |
+
|
79 |
+
[Apache 2.0](https://www.apache.org/licenses/LICENSE-2.0)
|