FLAIR-HUB -- Land-Cover mapping models (LC)
Collection
17 items
•
Updated
- Model architecture: swin_large_patch4_window12_384-upernet
- Optimizer: AdamW (betas=[0.9, 0.999], weight_decay=0.01)
- Learning rate: 5e-5
- Scheduler: one_cycle_lr (warmup_fraction=0.2)
- Epochs: 150
- Batch size: 5
- Seed: 2025
- Early stopping: patience 20, monitor val_miou (mode=max)
- Class weights:
- default: 1.0
- masked classes: [clear cut, ligneous, mixed, other] → weight = 0
- Input channels:
- AERIAL_RGBI : [4,1,2]
- Input normalization (custom):
- AERIAL_RGBI:
mean: [106.59, 105.66, 111.35]
std: [39.78, 52.23, 45.62]
- Train patches: 152225
- Validation patches: 38175
- Test patches: 50700
Metric | Value |
---|---|
mIoU | 64.80% |
Overall Accuracy | 77.73% |
F-score | 77.40% |
Precision | 77.68% |
Recall | 77.44% |
Class | IoU (%) | F-score (%) | Precision (%) | Recall (%) |
---|---|---|---|---|
building | 84.07 | 91.35 | 91.80 | 90.90 |
greenhouse | 77.35 | 87.23 | 84.06 | 90.65 |
swimming pool | 61.55 | 76.20 | 75.82 | 76.58 |
impervious surface | 75.86 | 86.27 | 86.15 | 86.40 |
pervious surface | 57.55 | 73.06 | 71.24 | 74.97 |
bare soil | 64.14 | 78.16 | 75.27 | 81.28 |
water | 90.44 | 94.98 | 96.04 | 93.95 |
snow | 68.55 | 81.34 | 93.67 | 71.88 |
herbaceous vegetation | 54.37 | 70.44 | 72.85 | 68.18 |
agricultural land | 58.20 | 73.58 | 69.77 | 77.82 |
plowed land | 36.07 | 53.02 | 51.80 | 54.29 |
vineyard | 78.95 | 88.24 | 85.52 | 91.14 |
deciduous | 71.66 | 83.49 | 82.72 | 84.29 |
coniferous | 63.00 | 77.30 | 79.44 | 75.27 |
brushwood | 30.22 | 46.42 | 49.08 | 44.02 |
Aerial ROI
Inference ROI
BibTeX:
@article{ign2025flairhub,
doi = {10.48550/arXiv.2506.07080},
url = {https://arxiv.org/abs/2506.07080},
author = {Garioud, Anatol and Giordano, Sébastien and David, Nicolas and Gonthier, Nicolas},
title = {FLAIR-HUB: Large-scale Multimodal Dataset for Land Cover and Crop Mapping},
publisher = {arXiv},
year = {2025}
}
APA:
Anatol Garioud, Sébastien Giordano, Nicolas David, Nicolas Gonthier.
FLAIR-HUB: Large-scale Multimodal Dataset for Land Cover and Crop Mapping. (2025).
DOI: https://doi.org/10.48550/arXiv.2506.07080