FLAIR-HUB -- Land-Cover mapping models (LC)
Collection
17 items
•
Updated
- Model architecture: swin_tiny_patch4_window7_224-upernet
- Optimizer: AdamW (betas=[0.9, 0.999], weight_decay=0.01)
- Learning rate: 5e-5
- Scheduler: one_cycle_lr (warmup_fraction=0.2)
- Epochs: 150
- Batch size: 5
- Seed: 2025
- Early stopping: patience 20, monitor val_miou (mode=max)
- Class weights:
- default: 1.0
- masked classes: [clear cut, ligneous, mixed, other] → weight = 0
- Input channels:
- AERIAL_RGBI : [4,1,2]
- Input normalization (custom):
- AERIAL_RGBI:
mean: [106.59, 105.66, 111.35]
std: [39.78, 52.23, 45.62]
- Train patches: 152225
- Validation patches: 38175
- Test patches: 50700
Metric | Value |
---|---|
mIoU | 62.16% |
Overall Accuracy | 76.24% |
F-score | 75.33% |
Precision | 75.71% |
Recall | 75.31% |
Class | IoU (%) | F-score (%) | Precision (%) | Recall (%) |
---|---|---|---|---|
building | 82.37 | 90.33 | 90.46 | 90.20 |
greenhouse | 72.11 | 83.80 | 79.52 | 88.57 |
swimming pool | 58.68 | 73.96 | 71.85 | 76.19 |
impervious surface | 74.27 | 85.23 | 85.56 | 84.92 |
pervious surface | 55.75 | 71.59 | 70.49 | 72.73 |
bare soil | 60.93 | 75.72 | 74.02 | 77.51 |
water | 88.45 | 93.87 | 95.17 | 92.61 |
snow | 64.39 | 78.34 | 91.63 | 68.41 |
herbaceous vegetation | 52.59 | 68.93 | 70.88 | 67.09 |
agricultural land | 55.37 | 71.27 | 67.69 | 75.25 |
plowed land | 30.81 | 47.10 | 45.73 | 48.56 |
vineyard | 76.44 | 86.65 | 84.87 | 88.50 |
deciduous | 70.95 | 83.00 | 81.34 | 84.73 |
coniferous | 60.39 | 75.31 | 80.00 | 71.13 |
brushwood | 28.89 | 44.83 | 46.43 | 43.33 |
Aerial ROI
Inference ROI
BibTeX:
@article{ign2025flairhub,
doi = {10.48550/arXiv.2506.07080},
url = {https://arxiv.org/abs/2506.07080},
author = {Garioud, Anatol and Giordano, Sébastien and David, Nicolas and Gonthier, Nicolas},
title = {FLAIR-HUB: Large-scale Multimodal Dataset for Land Cover and Crop Mapping},
publisher = {arXiv},
year = {2025}
}
APA:
Anatol Garioud, Sébastien Giordano, Nicolas David, Nicolas Gonthier.
FLAIR-HUB: Large-scale Multimodal Dataset for Land Cover and Crop Mapping. (2025).
DOI: https://doi.org/10.48550/arXiv.2506.07080