FLAIR-HUB -- Land-Cover mapping models (LC)
Collection
17 items
•
Updated
- Model architecture: swin_large_patch4_window12_384-upernet
- Optimizer: AdamW (betas=[0.9, 0.999], weight_decay=0.01)
- Learning rate: 5e-5
- Scheduler: one_cycle_lr (warmup_fraction=0.2)
- Epochs: 150
- Batch size: 5
- Seed: 2025
- Early stopping: patience 20, monitor val_miou (mode=max)
- Class weights:
- default: 1.0
- masked classes: [clear cut, ligneous, mixed, other] → weight = 0
- Input channels:
- AERIAL_RGBI : [1,2,3]
- Input normalization (custom):
- AERIAL_RGBI:
mean: [105.66, 111.35, 102.18]
std: [52.23, 45.62, 44.30]
- Train patches: 152225
- Validation patches: 38175
- Test patches: 50700
Metric | Value |
---|---|
mIoU | 63.36% |
Overall Accuracy | 76.95% |
F-score | 76.35% |
Precision | 77.04% |
Recall | 76.37% |
Class | IoU (%) | F-score (%) | Precision (%) | Recall (%) |
---|---|---|---|---|
building | 83.97 | 91.29 | 91.49 | 91.08 |
greenhouse | 77.25 | 87.16 | 84.38 | 90.14 |
swimming pool | 59.15 | 74.33 | 73.53 | 75.15 |
impervious surface | 75.64 | 86.13 | 86.24 | 86.02 |
pervious surface | 57.94 | 73.37 | 71.93 | 74.87 |
bare soil | 63.61 | 77.76 | 73.29 | 82.81 |
water | 90.07 | 94.78 | 94.50 | 95.05 |
snow | 54.78 | 70.78 | 92.39 | 57.37 |
herbaceous vegetation | 53.23 | 69.48 | 72.51 | 66.69 |
agricultural land | 57.93 | 73.37 | 69.54 | 77.64 |
plowed land | 38.39 | 55.48 | 53.90 | 57.16 |
vineyard | 78.81 | 88.15 | 85.33 | 91.17 |
deciduous | 69.91 | 82.29 | 81.36 | 83.24 |
coniferous | 59.47 | 74.58 | 78.84 | 70.76 |
brushwood | 30.17 | 46.36 | 46.41 | 46.31 |
Aerial ROI
Inference ROI
BibTeX:
@article{ign2025flairhub,
doi = {10.48550/arXiv.2506.07080},
url = {https://arxiv.org/abs/2506.07080},
author = {Garioud, Anatol and Giordano, Sébastien and David, Nicolas and Gonthier, Nicolas},
title = {FLAIR-HUB: Large-scale Multimodal Dataset for Land Cover and Crop Mapping},
publisher = {arXiv},
year = {2025}
}
APA:
Anatol Garioud, Sébastien Giordano, Nicolas David, Nicolas Gonthier.
FLAIR-HUB: Large-scale Multimodal Dataset for Land Cover and Crop Mapping. (2025).
DOI: https://doi.org/10.48550/arXiv.2506.07080