IGNF
/

🌐 FLAIR-HUB Model Collection

  • Trained on: FLAIR-HUB dataset 🔗
  • Available modalities: Aerial images, SPOT images, Topographic info, Sentinel-2 yearly time-series, Sentinel-1 yearly time-series, Historical aerial images
  • Encoders: ConvNeXTV2, Swin (Tiny, Small, Base, Large)
  • Decoders: UNet, UPerNet
  • Tasks: Land-cover mapping (LC), Crop-type mapping (LPIS)
  • Class nomenclature: 15 classes for LC, 23 classes for LPIS
🆔
Model ID
🗺️
Land-cover
🌾
Crop-types
🛩️
Aerial
⛰️
Elevation
🛰️
SPOT
🛰️
S2 t.s.
🛰️
S1 t.s.
🛩️
Historical
LC-A
LC-D
LC-F
LC-G
LC-I
LC-L
LPIS-A
LPIS-F
LPIS-I
LPIS-J

🔍 Model: FLAIR-HUB_LC-A_RVB_swinlarge-upernet

  • Encoder: swin_large_patch4_window12_384
  • Decoder: upernet
  • Metrics:
  • mIoU O.A. F-score Precision Recall
    63.36% 76.95% 76.35% 77.04% 76.37%
  • Params.: 199.4

General Informations


Training Config Hyperparameters

- Model architecture: swin_large_patch4_window12_384-upernet
- Optimizer: AdamW (betas=[0.9, 0.999], weight_decay=0.01)
- Learning rate: 5e-5
- Scheduler: one_cycle_lr (warmup_fraction=0.2)
- Epochs: 150
- Batch size: 5
- Seed: 2025
- Early stopping: patience 20, monitor val_miou (mode=max)
- Class weights:
    - default: 1.0
    - masked classes: [clear cut, ligneous, mixed, other]  weight = 0
- Input channels:
    - AERIAL_RGBI : [1,2,3]
- Input normalization (custom):
    - AERIAL_RGBI:
        mean: [105.66, 111.35, 102.18]
        std:  [52.23, 45.62, 44.30]

Training Data

- Train patches: 152225
- Validation patches: 38175
- Test patches: 50700
Classes distribution.

Training Logging

Training logging.

Metrics

Metric Value
mIoU 63.36%
Overall Accuracy 76.95%
F-score 76.35%
Precision 77.04%
Recall 76.37%
Class IoU (%) F-score (%) Precision (%) Recall (%)
building 83.97 91.29 91.49 91.08
greenhouse 77.25 87.16 84.38 90.14
swimming pool 59.15 74.33 73.53 75.15
impervious surface 75.64 86.13 86.24 86.02
pervious surface 57.94 73.37 71.93 74.87
bare soil 63.61 77.76 73.29 82.81
water 90.07 94.78 94.50 95.05
snow 54.78 70.78 92.39 57.37
herbaceous vegetation 53.23 69.48 72.51 66.69
agricultural land 57.93 73.37 69.54 77.64
plowed land 38.39 55.48 53.90 57.16
vineyard 78.81 88.15 85.33 91.17
deciduous 69.91 82.29 81.36 83.24
coniferous 59.47 74.58 78.84 70.76
brushwood 30.17 46.36 46.41 46.31

Inference

Aerial ROI

AERIAL

Inference ROI

INFERENCE

Cite

BibTeX:

@article{ign2025flairhub,
  doi = {10.48550/arXiv.2506.07080},
  url = {https://arxiv.org/abs/2506.07080},
  author = {Garioud, Anatol and Giordano, Sébastien and David, Nicolas and Gonthier, Nicolas},
  title = {FLAIR-HUB: Large-scale Multimodal Dataset for Land Cover and Crop Mapping},
  publisher = {arXiv},
  year = {2025}
}

APA:

Anatol Garioud, Sébastien Giordano, Nicolas David, Nicolas Gonthier. 
FLAIR-HUB: Large-scale Multimodal Dataset for Land Cover and Crop Mapping. (2025). 
DOI: https://doi.org/10.48550/arXiv.2506.07080
Downloads last month

-

Downloads are not tracked for this model. How to track
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support

Collection including IGNF/FLAIR-HUB_LC-A_RGB_swinlarge-upernet

Evaluation results