IGNF
/

AGarioud's picture
Update README.md
cdb0b7d verified
metadata
license: etalab-2.0
pipeline_tag: image-segmentation
tags:
  - semantic segmentation
  - pytorch
  - landcover
library_name: pytorch
model-index:
  - name: FLAIR-HUB_LC-A_swinlarge-upernet
    results:
      - task:
          type: semantic-segmentation
        dataset:
          name: IGNF/FLAIR-HUB/
          type: earth-observation-dataset
        metrics:
          - type: mIoU
            value: 61.868
            name: mIoU
          - type: OA
            value: 76.067
            name: Overall Accuracy
          - type: IoU
            value: 83.423
            name: IoU building
          - type: IoU
            value: 75.669
            name: IoU greenhouse
          - type: IoU
            value: 61.59
            name: IoU swimming pool
          - type: IoU
            value: 75.15
            name: IoU impervious surface
          - type: IoU
            value: 56.467
            name: IoU pervious surface
          - type: IoU
            value: 62.006
            name: IoU bare soil
          - type: IoU
            value: 88.373
            name: IoU water
          - type: IoU
            value: 51.815
            name: IoU snow
          - type: IoU
            value: 52.26
            name: IoU herbaceous vegetation
          - type: IoU
            value: 56.434
            name: IoU agricultural land
          - type: IoU
            value: 34.136
            name: IoU plowed land
          - type: IoU
            value: 77.787
            name: IoU vineyard
          - type: IoU
            value: 69.129
            name: IoU deciduous
          - type: IoU
            value: 57.445
            name: IoU coniferous
          - type: IoU
            value: 28.85
            name: IoU brushwood

🌐 FLAIR-HUB Model Collection

  • Trained on: FLAIR-HUB dataset 🔗
  • Available modalities: Aerial images, SPOT images, Topographic info, Sentinel-2 yearly time-series, Sentinel-1 yearly time-series, Historical aerial images
  • Encoders: ConvNeXTV2, Swin (Tiny, Small, Base, Large)
  • Decoders: UNet, UPerNet
  • Tasks: Land-cover mapping (LC), Crop-type mapping (LPIS)
  • Class nomenclature: 15 classes for LC, 23 classes for LPIS
🆔
Model ID
🗺️
Land-cover
🌾
Crop-types
🛩️
Aerial
⛰️
Elevation
🛰️
SPOT
🛰️
S2 t.s.
🛰️
S1 t.s.
🛩️
Historical
LC-A
LC-D
LC-F
LC-G
LC-I
LC-L
LPIS-A
LPIS-F
LPIS-I
LPIS-J

🔍 Model: FLAIR-HUB_LC-A_RVB_swinsmall-upernet

  • Encoder: swin_small_patch4_window7_224
  • Decoder: upernet
  • Metrics:
  • mIoU O.A. F-score Precision Recall
    61.87% 76.07% 75.11% 76.13% 74.97%
  • Params.: 50.7

General Informations


Training Config Hyperparameters

- Model architecture: swin_small_patch4_window7_224-upernet
- Optimizer: AdamW (betas=[0.9, 0.999], weight_decay=0.01)
- Learning rate: 5e-5
- Scheduler: one_cycle_lr (warmup_fraction=0.2)
- Epochs: 150
- Batch size: 5
- Seed: 2025
- Early stopping: patience 20, monitor val_miou (mode=max)
- Class weights:
    - default: 1.0
    - masked classes: [clear cut, ligneous, mixed, other]  weight = 0
- Input channels:
    - AERIAL_RGBI : [1,2,3]
- Input normalization (custom):
    - AERIAL_RGBI:
        mean: [105.66, 111.35, 102.18]
        std:  [52.23, 45.62, 44.30]

Training Data

- Train patches: 152225
- Validation patches: 38175
- Test patches: 50700
Classes distribution.

Training Logging

Training logging.

Metrics

Metric Value
mIoU 61.87%
Overall Accuracy 76.07%
F-score 75.11%
Precision 76.13%
Recall 74.97%
Class IoU (%) F-score (%) Precision (%) Recall (%)
building 83.42 90.96 91.14 90.79
greenhouse 75.67 86.15 84.00 88.42
swimming pool 59.08 74.28 73.34 75.24
impervious surface 75.15 85.81 85.80 85.82
pervious surface 56.47 72.18 71.49 72.88
bare soil 62.01 76.55 72.14 81.53
water 88.37 93.83 92.76 94.92
snow 51.82 68.26 92.98 53.93
herbaceous vegetation 52.26 68.65 72.10 65.51
agricultural land 56.43 72.15 67.57 77.40
plowed land 34.14 50.90 49.04 52.90
vineyard 77.79 87.51 85.54 89.56
deciduous 69.13 81.75 80.27 83.28
coniferous 57.44 72.97 77.92 68.61
brushwood 28.85 44.78 45.88 43.73

Inference

Aerial ROI

AERIAL

Inference ROI

INFERENCE

Cite

BibTeX:

@article{ign2025flairhub,
  doi = {10.48550/arXiv.2506.07080},
  url = {https://arxiv.org/abs/2506.07080},
  author = {Garioud, Anatol and Giordano, Sébastien and David, Nicolas and Gonthier, Nicolas},
  title = {FLAIR-HUB: Large-scale Multimodal Dataset for Land Cover and Crop Mapping},
  publisher = {arXiv},
  year = {2025}
}

APA:

Anatol Garioud, Sébastien Giordano, Nicolas David, Nicolas Gonthier. 
FLAIR-HUB: Large-scale Multimodal Dataset for Land Cover and Crop Mapping. (2025). 
DOI: https://doi.org/10.48550/arXiv.2506.07080