IGNF
/

AGarioud's picture
Update README.md
467721d verified
metadata
license: etalab-2.0
pipeline_tag: image-segmentation
tags:
  - semantic segmentation
  - pytorch
  - landcover
model-index:
  - name: FLAIR-HUB_LC-A_RVB_swintiny-upernet
    results:
      - task:
          type: semantic-segmentation
        dataset:
          name: IGNF/FLAIR-HUB/
          type: earth-observation-dataset
        metrics:
          - type: mIoU
            value: 62.007
            name: mIoU
          - type: OA
            value: 75.58
            name: Overall Accuracy
          - type: IoU
            value: 82.435
            name: IoU building
          - type: IoU
            value: 76.304
            name: IoU greenhouse
          - type: IoU
            value: 61.59
            name: IoU swimming pool
          - type: IoU
            value: 74.236
            name: IoU impervious surface
          - type: IoU
            value: 55.914
            name: IoU pervious surface
          - type: IoU
            value: 62.431
            name: IoU bare soil
          - type: IoU
            value: 88.028
            name: IoU water
          - type: IoU
            value: 60.68
            name: IoU snow
          - type: IoU
            value: 51.072
            name: IoU herbaceous vegetation
          - type: IoU
            value: 56.233
            name: IoU agricultural land
          - type: IoU
            value: 33.876
            name: IoU plowed land
          - type: IoU
            value: 77.533
            name: IoU vineyard
          - type: IoU
            value: 68.486
            name: IoU deciduous
          - type: IoU
            value: 55.445
            name: IoU coniferous
          - type: IoU
            value: 29.469
            name: IoU brushwood
library_name: pytorch

🌐 FLAIR-HUB Model Collection

  • Trained on: FLAIR-HUB dataset 🔗
  • Available modalities: Aerial images, SPOT images, Topographic info, Sentinel-2 yearly time-series, Sentinel-1 yearly time-series, Historical aerial images
  • Encoders: ConvNeXTV2, Swin (Tiny, Small, Base, Large)
  • Decoders: UNet, UPerNet
  • Tasks: Land-cover mapping (LC), Crop-type mapping (LPIS)
  • Class nomenclature: 15 classes for LC, 23 classes for LPIS
🆔
Model ID
🗺️
Land-cover
🌾
Crop-types
🛩️
Aerial
⛰️
Elevation
🛰️
SPOT
🛰️
S2 t.s.
🛰️
S1 t.s.
🛩️
Historical
LC-A
LC-D
LC-F
LC-G
LC-I
LC-L
LPIS-A
LPIS-F
LPIS-I
LPIS-J

🔍 Model: FLAIR-HUB_LC-A_RVB_swintiny-upernet

  • Encoder: swin_tiny_patch4_window7_224
  • Decoder: upernet
  • Metrics:
  • mIoU O.A. F-score Precision Recall
    62.01% 75.58% 75.27% 76.11% 75.10%
  • Params.: 29.4

General Informations


Training Config Hyperparameters

- Model architecture: swin_tiny_patch4_window7_224-upernet
- Optimizer: AdamW (betas=[0.9, 0.999], weight_decay=0.01)
- Learning rate: 5e-5
- Scheduler: one_cycle_lr (warmup_fraction=0.2)
- Epochs: 150
- Batch size: 5
- Seed: 2025
- Early stopping: patience 20, monitor val_miou (mode=max)
- Class weights:
    - default: 1.0
    - masked classes: [clear cut, ligneous, mixed, other]  weight = 0
- Input channels:
    - AERIAL_RGBI : [1,2,3]
- Input normalization (custom):
    - AERIAL_RGBI:
        mean: [105.66, 111.35, 102.18]
        std:  [52.23, 45.62, 44.30]

Training Data

- Train patches: 152225
- Validation patches: 38175
- Test patches: 50700
Classes distribution.

Training Logging

Training logging.

Metrics

Metric Value
mIoU 62.01%
Overall Accuracy 75.58%
F-score 75.27%
Precision 76.11%
Recall 75.10%
Class IoU (%) F-score (%) Precision (%) Recall (%)
building 82.44 90.37 90.51 90.24
greenhouse 76.30 86.56 84.06 89.21
swimming pool 57.97 73.39 73.87 72.92
impervious surface 74.24 85.21 85.38 85.05
pervious surface 55.91 71.72 69.81 73.75
bare soil 62.43 76.87 73.25 80.86
water 88.03 93.63 93.18 94.09
snow 60.68 75.53 94.83 62.76
herbaceous vegetation 51.07 67.61 71.85 63.84
agricultural land 56.23 71.99 67.08 77.67
plowed land 33.88 50.61 50.90 50.32
vineyard 77.53 87.35 83.85 91.14
deciduous 68.49 81.30 79.27 83.43
coniferous 55.44 71.34 79.03 65.01
brushwood 29.47 45.52 44.80 46.27

Inference

Aerial ROI

AERIAL

Inference ROI

INFERENCE

Cite

BibTeX:

@article{ign2025flairhub,
  doi = {10.48550/arXiv.2506.07080},
  url = {https://arxiv.org/abs/2506.07080},
  author = {Garioud, Anatol and Giordano, Sébastien and David, Nicolas and Gonthier, Nicolas},
  title = {FLAIR-HUB: Large-scale Multimodal Dataset for Land Cover and Crop Mapping},
  publisher = {arXiv},
  year = {2025}
}

APA:

Anatol Garioud, Sébastien Giordano, Nicolas David, Nicolas Gonthier. 
FLAIR-HUB: Large-scale Multimodal Dataset for Land Cover and Crop Mapping. (2025). 
DOI: https://doi.org/10.48550/arXiv.2506.07080