metadata
license: etalab-2.0
pipeline_tag: image-segmentation
tags:
- semantic segmentation
- pytorch
- landcover
model-index:
- name: FLAIR-HUB_LC-A_RVB_swintiny-upernet
results:
- task:
type: semantic-segmentation
dataset:
name: IGNF/FLAIR-HUB/
type: earth-observation-dataset
metrics:
- type: mIoU
value: 62.007
name: mIoU
- type: OA
value: 75.58
name: Overall Accuracy
- type: IoU
value: 82.435
name: IoU building
- type: IoU
value: 76.304
name: IoU greenhouse
- type: IoU
value: 61.59
name: IoU swimming pool
- type: IoU
value: 74.236
name: IoU impervious surface
- type: IoU
value: 55.914
name: IoU pervious surface
- type: IoU
value: 62.431
name: IoU bare soil
- type: IoU
value: 88.028
name: IoU water
- type: IoU
value: 60.68
name: IoU snow
- type: IoU
value: 51.072
name: IoU herbaceous vegetation
- type: IoU
value: 56.233
name: IoU agricultural land
- type: IoU
value: 33.876
name: IoU plowed land
- type: IoU
value: 77.533
name: IoU vineyard
- type: IoU
value: 68.486
name: IoU deciduous
- type: IoU
value: 55.445
name: IoU coniferous
- type: IoU
value: 29.469
name: IoU brushwood
library_name: pytorch
🌐 FLAIR-HUB Model Collection
- Trained on: FLAIR-HUB dataset 🔗
- Available modalities: Aerial images, SPOT images, Topographic info, Sentinel-2 yearly time-series, Sentinel-1 yearly time-series, Historical aerial images
- Encoders: ConvNeXTV2, Swin (Tiny, Small, Base, Large)
- Decoders: UNet, UPerNet
- Tasks: Land-cover mapping (LC), Crop-type mapping (LPIS)
- Class nomenclature: 15 classes for LC, 23 classes for LPIS
🔍 Model: FLAIR-HUB_LC-A_RVB_swintiny-upernet
- Encoder: swin_tiny_patch4_window7_224
- Decoder: upernet
- Metrics:
- Params.: 29.4
General Informations
- Contact: [email protected]
- Code repository: https://github.com/IGNF/FLAIR-HUB
- Paper: https://arxiv.org/abs/2506.07080
- Developed by: IGN
- Compute infrastructure:
- software: python, pytorch-lightning
- hardware: HPC/AI resources provided by GENCI-IDRIS
- License: Etalab 2.0
Training Config Hyperparameters
- Model architecture: swin_tiny_patch4_window7_224-upernet
- Optimizer: AdamW (betas=[0.9, 0.999], weight_decay=0.01)
- Learning rate: 5e-5
- Scheduler: one_cycle_lr (warmup_fraction=0.2)
- Epochs: 150
- Batch size: 5
- Seed: 2025
- Early stopping: patience 20, monitor val_miou (mode=max)
- Class weights:
- default: 1.0
- masked classes: [clear cut, ligneous, mixed, other] → weight = 0
- Input channels:
- AERIAL_RGBI : [1,2,3]
- Input normalization (custom):
- AERIAL_RGBI:
mean: [105.66, 111.35, 102.18]
std: [52.23, 45.62, 44.30]
Training Data
- Train patches: 152225
- Validation patches: 38175
- Test patches: 50700

Training Logging

Metrics
Metric | Value |
---|---|
mIoU | 62.01% |
Overall Accuracy | 75.58% |
F-score | 75.27% |
Precision | 76.11% |
Recall | 75.10% |
Class | IoU (%) | F-score (%) | Precision (%) | Recall (%) |
---|---|---|---|---|
building | 82.44 | 90.37 | 90.51 | 90.24 |
greenhouse | 76.30 | 86.56 | 84.06 | 89.21 |
swimming pool | 57.97 | 73.39 | 73.87 | 72.92 |
impervious surface | 74.24 | 85.21 | 85.38 | 85.05 |
pervious surface | 55.91 | 71.72 | 69.81 | 73.75 |
bare soil | 62.43 | 76.87 | 73.25 | 80.86 |
water | 88.03 | 93.63 | 93.18 | 94.09 |
snow | 60.68 | 75.53 | 94.83 | 62.76 |
herbaceous vegetation | 51.07 | 67.61 | 71.85 | 63.84 |
agricultural land | 56.23 | 71.99 | 67.08 | 77.67 |
plowed land | 33.88 | 50.61 | 50.90 | 50.32 |
vineyard | 77.53 | 87.35 | 83.85 | 91.14 |
deciduous | 68.49 | 81.30 | 79.27 | 83.43 |
coniferous | 55.44 | 71.34 | 79.03 | 65.01 |
brushwood | 29.47 | 45.52 | 44.80 | 46.27 |
Inference
Aerial ROI

Inference ROI

Cite
BibTeX:
@article{ign2025flairhub,
doi = {10.48550/arXiv.2506.07080},
url = {https://arxiv.org/abs/2506.07080},
author = {Garioud, Anatol and Giordano, Sébastien and David, Nicolas and Gonthier, Nicolas},
title = {FLAIR-HUB: Large-scale Multimodal Dataset for Land Cover and Crop Mapping},
publisher = {arXiv},
year = {2025}
}
APA:
Anatol Garioud, Sébastien Giordano, Nicolas David, Nicolas Gonthier.
FLAIR-HUB: Large-scale Multimodal Dataset for Land Cover and Crop Mapping. (2025).
DOI: https://doi.org/10.48550/arXiv.2506.07080