YAML Metadata Warning: empty or missing yaml metadata in repo card (https://huggingface.co/docs/hub/model-cards#model-card-metadata)

latitude_mean: 39.951631102585964
latitude_std: 0.0006960598068888123
longitude_mean: -75.1914340210287
longitude_std: 0.0006455062924978866

from huggingface_hub import hf_hub_download
import torch

import torch.nn as nn
import torch.nn.functional as F
from huggingface_hub import PyTorchModelHubMixin
import torchvision.models as models

class SimpleCNN(nn.Module, PyTorchModelHubMixin):
    def __init__(self):
        super().__init__()

        # Convolutional layers
        self.conv3to32 = nn.Conv2d(in_channels=3, out_channels=15, kernel_size=9, stride=1, padding=4)

        self.conv32to32kernel5 = nn.Conv2d(in_channels=15, out_channels=15, kernel_size=5, stride=1, padding=2)

        self.conv32to64 = nn.Conv2d(in_channels=15, out_channels=30, kernel_size=3, stride=1, padding=1)

        self.pool2 = nn.MaxPool2d(kernel_size=2, stride=2)
        self.dropout = nn.Dropout(0.5)

        self.linear_input_dims = 30*56*56
        self.fc_1 = nn.Linear(self.linear_input_dims, 100)
        self.fc_2 = nn.Linear(100, 2)

    def forward(self, x):
        x = F.relu(self.conv3to32(x))
        x = F.relu(self.conv32to32kernel5(x))


        x = self.pool2(x)
        x = F.relu(self.conv32to64(x))

        x = self.pool2(x)
        x = self.dropout(x)

        x = x.view(-1, self.linear_input_dims)
        x = F.relu(self.fc_1(x))
        x = self.fc_2(x)
        return x

    def save_model(self, save_path):
        """Save model locally using the Hugging Face format."""
        self.save_pretrained(save_path)

    def push_model(self, repo_name):
        """Push the model to the Hugging Face Hub."""
        self.push_to_hub(repo_name)


# Specify the repository and the filename of the model you want to load
repo_id = "IanAndJohn/Model_Ian"  # Replace with your repo name
filename = model_save_path

model_path = hf_hub_download(repo_id=repo_id, filename=filename)

# Load the model using torch
model = SimpleCNN()
model.load_state_dict(torch.load(model_path))
model.eval()  # Set the model to evaluation mode
Downloads last month

-

Downloads are not tracked for this model. How to track
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.
The model cannot be deployed to the HF Inference API: The model has no library tag.