YAML Metadata Warning: empty or missing yaml metadata in repo card (https://huggingface.co/docs/hub/model-cards#model-card-metadata)

atitude_mean: 39.95184413388056 latitude_std: 0.0006308700565432299 longitude_mean: -75.19147985909444 longitude_std: 0.0006379960634765379

To run input tensors to predict_from_model(input_tensor):

import torch
import torch.nn as nn
import torchvision.transforms as transforms
from torch.utils.data import DataLoader, Dataset
from transformers import AutoImageProcessor, AutoModelForImageClassification
from huggingface_hub import PyTorchModelHubMixin
from PIL import Image
import os
import numpy as np

def predict_from_model(input_tensor):
    import torch
    import torchvision.transforms as transforms
    import matplotlib.pyplot as plt
    from geopy.distance import geodesic
    from datasets import load_dataset
    from huggingface_hub import hf_hub_download
    import numpy as np

    torch.cuda.empty_cache()

#############
    path_map = {"best region models/region_model_lr_0.0002_step_10_gamma_0.1_epochs_15.pth" : hf_hub_download(repo_id="IanAndJohn/region_ensemble_model", filename="best region models/region_model_lr_0.0002_step_10_gamma_0.1_epochs_15.pth"),
                "best region models/region_model_lr_0.00035_step_10_gamma_0.1_epochs_50.pth" : hf_hub_download(repo_id="IanAndJohn/region_ensemble_model", filename="best region models/region_model_lr_0.00035_step_10_gamma_0.1_epochs_50.pth"),
                "best region models/region_model_lr_0.0005_step_10_gamma_0.1_epochs_50.pth" : hf_hub_download(repo_id="IanAndJohn/region_ensemble_model", filename="best region models/region_model_lr_0.0005_step_10_gamma_0.1_epochs_50.pth"),
                "best region models/region_model_lr_0.0005_step_10_gamma_0.1_epochs_60.pth" : hf_hub_download(repo_id="IanAndJohn/region_ensemble_model", filename="best region models/region_model_lr_0.0005_step_10_gamma_0.1_epochs_60.pth"),
                "best region models/region_model_lr_0.002_step_10_gamma_0.1_epochs_100.pth" : hf_hub_download(repo_id="IanAndJohn/region_ensemble_model", filename="best region models/region_model_lr_0.002_step_10_gamma_0.1_epochs_100.pth"),
                "best region models/model_histories.json" : hf_hub_download(repo_id="IanAndJohn/region_ensemble_model", filename="best region models/model_histories.json"),
                "models/location_model_0.pth" : hf_hub_download(repo_id="IanAndJohn/region_ensemble_model", filename="models/location_model_0.pth"),
                "models/location_model_1.pth" : hf_hub_download(repo_id="IanAndJohn/region_ensemble_model", filename="models/location_model_1.pth"),
                "models/location_model_2.pth" : hf_hub_download(repo_id="IanAndJohn/region_ensemble_model", filename="models/location_model_2.pth"),
                "models/location_model_3.pth" : hf_hub_download(repo_id="IanAndJohn/region_ensemble_model", filename="models/location_model_3.pth"),
                "models/location_model_4.pth" : hf_hub_download(repo_id="IanAndJohn/region_ensemble_model", filename="models/location_model_4.pth"),
                "models/location_model_5.pth" : hf_hub_download(repo_id="IanAndJohn/region_ensemble_model", filename="models/location_model_5.pth"),
                "models/location_model_6.pth" : hf_hub_download(repo_id="IanAndJohn/region_ensemble_model", filename="models/location_model_6.pth"),
                "region_ensemble_weights.json" : hf_hub_download(repo_id="IanAndJohn/region_ensemble_model", filename="region_ensemble_weights.json")}

##############
    import torch
    import torch.nn as nn
    import torchvision.transforms as transforms
    from torch.utils.data import DataLoader, Dataset
    from transformers import AutoImageProcessor, AutoModelForImageClassification
    from huggingface_hub import PyTorchModelHubMixin
    from PIL import Image
    import os
    import numpy as np

    class PredictedObject():
        def __init__(self, image, lat, lon, region, original_lat=None, original_lon=None):
            self.lat = lat
            self.lon = lon
            self.region = region
            self.image = image

            if original_lat is None or original_lon is None:
                self.original_lat = lat
                self.original_lon = lon
            else:
                self.original_lat = original_lat
                self.original_lon = original_lon

            self.predicted_region = None
            self.predicted_lat = None
            self.predicted_lon = None

        def __lt__(self, other):
            return self.predicted_region < other.predicted_region

        def __eq__(self, other):
            return self.predicted_region == other.predicted_region

    class PredictionObjectDataset(Dataset):
        def __init__(self, object_lst, transform=None, lat_mean=None, lat_std=None, lon_mean=None, lon_std=None, useRegions=False, give_originals=False):
            self.object_lst = object_lst
            self.transform = transform
            self.useRegions = useRegions
            self.give_originals = give_originals

            # Compute mean and std from the dataframe if not provided
            if (len(self.object_lst) == 1):
                self.latitude_mean = self.object_lst[0].lat
                self.latitude_std = 1
                self.longitude_mean = self.object_lst[0].lon
                self.longitude_std = 1
            else:
                self.latitude_mean = lat_mean if lat_mean is not None else np.mean(np.array([x.lat for x in self.object_lst]))
                self.latitude_std = lat_std if lat_std is not None else np.std(np.array([x.lat for x in self.object_lst]))
                self.longitude_mean = lon_mean if lon_mean is not None else np.mean(np.array([x.lon for x in self.object_lst]))
                self.longitude_std = lon_std if lon_std is not None else np.std(np.array([x.lon for x in self.object_lst]))

            self.normalize()

        def normalize(self):
            new_object_lst = []
            for obj in self.object_lst:
                obj.lat = (obj.lat - self.latitude_mean) / self.latitude_std
                obj.lon = (obj.lon - self.longitude_mean) / self.longitude_std
                new_object_lst.append(obj)
            self.object_lst = new_object_lst

        def __len__(self):
            return len(self.object_lst)

        def __getitem__(self, idx):
            # Extract data
            example = self.object_lst[idx]

            # Load and process the image
            image = example.image
            latitude = example.lat
            longitude = example.lon
            region = example.region

            # image = image.rotate(-90, expand=True)
            if self.transform:
                image = self.transform(image)

            # Normalize GPS coordinates
            gps_coords = torch.tensor([latitude, longitude], dtype=torch.float32)
            gps_coords_orginal = torch.tensor([example.original_lat, example.original_lon], dtype=torch.float32)

            if self.useRegions and self.give_originals:
                return image, gps_coords, gps_coords_orginal, region
            elif self.useRegions:
                return image, gps_coords, region
            elif self.give_originals:
                return image, gps_coords, gps_coords_orginal
            else:
                return image, gps_coords

    class TensorDataset(Dataset):
        def __init__(self, tensors, transform=None, lat_mean=None, lat_std=None, lon_mean=None, lon_std=None, useRegions=False, give_originals=False):
            # self.hf_dataset = hf_dataset.map(
            self.tensors = tensors

        def __len__(self):
            return len(self.tensors)

        def __getitem__(self, idx):
            # Extract data
            image = self.tensors[idx]
            return image
##################
    transform = transforms.Compose([
    #transforms.RandomResizedCrop(224),  # Random crop and resize to 224x224
    transforms.Resize((224, 224)),
    transforms.RandomHorizontalFlip(),  # Random horizontal flip
    # transforms.RandomRotation(degrees=15),  # Random rotation between -15 and 15 degrees
    transforms.ColorJitter(brightness=0.2, contrast=0.2, saturation=0.2, hue=0.1),  # Random color jitter
    transforms.ToTensor(),
    transforms.Normalize(mean=[0.485, 0.456, 0.406],
                         std=[0.229, 0.224, 0.225])
    ])

    # Optionally, you can create a separate transform for inference without augmentations
    inference_transform = transforms.Compose([
        transforms.Resize((224, 224)),
        transforms.ToTensor(),
        transforms.Normalize(mean=[0.485, 0.456, 0.406],
                            std=[0.229, 0.224, 0.225])
    ])


    # Create the training dataset and dataloader
    train_dataset = TensorDataset(input_tensor)
    train_dataloader = DataLoader(train_dataset, batch_size=32, shuffle=True)

    # lat_mean = train_dataset.latitude_mean
    # lat_std = train_dataset.latitude_std
    # lon_mean = train_dataset.longitude_mean
    # lon_std = train_dataset.longitude_std

#####################
    import torch
    import torch.nn as nn
    import torchvision.transforms as transforms
    from torch.utils.data import DataLoader, Dataset
    from transformers import AutoImageProcessor, AutoModelForImageClassification
    from huggingface_hub import PyTorchModelHubMixin
    from PIL import Image
    import os
    import numpy as np
    import json
    import torchvision.models as models
##################
    import torch.nn.functional as F
    class_frequency = torch.zeros(7)

    region_one_hot = F.one_hot(torch.tensor([0,1,2,3,4,5,6]), num_classes=7)

    # for _, _, region in train_dataset:
    #     class_frequency += region_one_hot[region]

    # print(class_frequency)
    # class_weights = torch.full((7,), len(train_dataset)) / class_frequency
    # class_weights = class_weights / torch.max(class_weights)
    # print(class_weights)
    class_weights = [0.2839, 0.4268, 0.5583, 0.3873, 1.0000, 0.6036, 0.6009]
#####################
    device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
    # print(f'Using device: {device}')

    per_model_weights = []
    with open(path_map['region_ensemble_weights.json'], 'r') as file:
        per_model_weights = json.load(file)

    search_stats = []
    with open(path_map['best region models/model_histories.json'], 'r') as file:
        search_stats = json.load(file)

    my_models = []

    for i, (path, _, _, _, _, _, _, _, _) in enumerate(search_stats):
        path = path_map[path]
        state_dict = torch.load(path)

        region_model = models.resnet18(pretrained=False)
        num_features = region_model.fc.in_features
        region_model.fc = nn.Sequential(nn.Dropout(0.5),
                                        nn.Linear(num_features, 7))
        region_model.load_state_dict(state_dict)

        region_model.cpu()

        my_models.append(region_model)

    per_model_weights = torch.tensor(per_model_weights).to(device)
#########
    torch.cuda.empty_cache()
##########
    predicted_object_lst = []

    num_regions = 7

    for images in train_dataloader:
        images = images.to(device)
        # gps_coords_original = gps_coords_original.to(device)

        outputs = torch.zeros((images.shape[0], 7)).to(device)

        for i, model in enumerate(my_models):
            model.eval()
            model.to(device)

            model_outputs = model(images)
            outputs += per_model_weights[i] * model_outputs

            model.cpu()
            # print(i, len(predicted_object_lst))

        outputs /= len(my_models)

        _, predicted_regions = torch.max(outputs, 1)

        predicted_regions = predicted_regions.cpu().numpy()
        images = images.cpu().numpy()

        for i in range(len(predicted_regions)):
            predicted_object = PredictedObject(images[i], -1, -1, predicted_regions[i])
            predicted_object.predicted_region = predicted_regions[i]
            predicted_object_lst.append(predicted_object)

    torch.cuda.empty_cache()
#################
    predicted_object_lst = sorted(predicted_object_lst)

    po_predicted_region_lst = [[] for _ in range(7)]

    for po in predicted_object_lst:
        po.lat = po.original_lat
        po.lon = po.original_lon

        po_predicted_region_lst[po.predicted_region].append(po)

    po_datasets = [PredictionObjectDataset(x, give_originals=True) for x in po_predicted_region_lst]
    # print([len(ds) for ds in po_datasets])
    po_loaders = [DataLoader(x, batch_size=32, shuffle=False) for x in po_datasets]

    # lat_mean_lst = [x.latitude_mean for x in po_datasets]
    # lat_std_lst = [x.latitude_std for x in po_datasets]
    # lon_mean_lst = [x.longitude_mean for x in po_datasets]
    # lon_std_lst = [x.longitude_std for x in po_datasets]

############
    from sklearn.metrics import mean_absolute_error, mean_squared_error
    import torch.nn.functional as F

    # all_preds = []
    # all_actuals = []
    all_preds_norm = []
    # all_actuals_norm = []
    # all_regions = []

    for i in range(num_regions):
        # print(f'region {i}')
        # model_all_preds = []
        # model_all_actuals = []
        model_all_preds_norm = []
        # model_all_actuals_norm = []
        # model_all_regions = []

        val_dataloader = po_loaders[i]
        if (len(val_dataloader) == 0):
            continue

        state_dict = torch.load(path_map[f'models/location_model_{i}.pth'])

        model_loction = models.resnet18(pretrained=False)
        num_features = model_loction.fc.in_features
        model_loction.fc = nn.Linear(num_features, 2)

        model_loction.load_state_dict(state_dict)

        model_loction.to(device)

        model_loction.eval()
        with torch.no_grad():
            for images, _, _ in val_dataloader:
                images = images.to(device)

                outputs = model_loction(images)

                # Denormalize predictions and actual values
                preds_norm = outputs.cpu()
                # actuals_norm = gps_coords.cpu()
                # preds = outputs.cpu() * torch.tensor([lat_std_lst[i], lon_std_lst[i]]) + torch.tensor([lat_mean_lst[i], lon_mean_lst[i]])
                # actuals = gps_coords.cpu() * torch.tensor([lat_std_lst[i], lon_std_lst[i]]) + torch.tensor([lat_mean_lst[i], lon_mean_lst[i]])#gps_coords_original.cpu()

                # model_all_preds.append(preds)
                # model_all_actuals.append(actuals)
                model_all_preds_norm.append(preds_norm)
                # model_all_actuals_norm.append(actuals_norm)
                # model_all_regions.extend([i for _ in range(len(images))])

        # Concatenate all batches
        # model_all_preds = torch.cat(model_all_preds)
        # model_all_actuals = torch.cat(model_all_actuals)
        model_all_preds_norm = torch.cat(model_all_preds_norm)
        # model_all_actuals_norm = torch.cat(model_all_actuals_norm)


        # Compute error metrics
        # rmse = F.mse_loss(model_all_actuals_norm, model_all_preds_norm)

        # model_all_preds = model_all_preds.numpy()
        # model_all_actuals = model_all_actuals.numpy()
        model_all_preds_norm = model_all_preds_norm.numpy()
        # model_all_actuals_norm = model_all_actuals_norm.numpy()

        # print(model_all_preds[0])
        # print(model_all_actuals[0])
        # print(model_all_preds_norm[0])
        # print(model_all_actuals_norm[0])

        # print(f'Mean Squared Error: {rmse}')

        # all_preds.append([model_all_preds])
        # all_actuals.append([model_all_actuals])
        all_preds_norm.append([model_all_preds_norm])
        # print("images predicted: ", len(all_preds_norm))
        # all_actuals_norm.append([model_all_actuals_norm])
        # all_regions.append(model_all_regions)

        del model_loction
        torch.cuda.empty_cache()
############
    # all_preds_denorm = all_preds
    # all_actuals_denorm = all_actuals
    all_preds = all_preds_norm
    # all_actuals = all_actuals_norm
    # all_regions = all_regions

    def flatten(lst):
        newlst = []
        for sublst in lst:
            for item in sublst:
                newlst.append(item)
        return newlst

    all_preds = flatten(all_preds)
    # all_actuals = flatten(all_actuals)
    # all_preds_denorm = flatten(all_preds_denorm)
    # all_actuals_denorm = flatten(all_actuals_denorm)
    # all_regions = list(flatten(all_regions))
#############
    # actual_denorm_y = []
    # actual_denorm_x = []
    # for x in all_actuals_denorm:
    #     for e in x:
    #         actual_denorm_x.append(e[0])
    #         actual_denorm_y.append(e[1])
    #     # actual_denorm_x.append(x[0])
    #     # actual_denorm_y.append(x[1])

    # pred_denorm_y = []
    # pred_denorm_x = []
    # for x in all_preds_denorm:
    #     for e in x:
    #         pred_denorm_x.append(e[0])
    #         pred_denorm_y.append(e[1])
    #     # pred_denorm_x.append(x[0])
    #     # pred_denorm_y.append(x[1])

    # actual_y = []
    # actual_x = []
    # for x in all_actuals:
    #     for e in x:
    #         actual_x.append(e[0])
    #         actual_y.append(e[1])
    #     # actual_x.append(x[0])
    #     # actual_y.append(x[1])

    pred_y = []
    pred_x = []
    for x in all_preds:
        for e in x:
            pred_x.append(e[0])
            pred_y.append(e[1])
############
    t = torch.zeros((len(pred_x), 2))
    t[:, 0] = torch.tensor(pred_x)
    t[:, 1] = torch.tensor(pred_y)
    return t

#     import matplotlib.pyplot as plt
#     from geopy.distance import geodesic
#     import seaborn as sns

#     print(pred_x)
#     print(pred_y)
#     print(actual_x)
#     print(actual_y)
#     print(pred_denorm_x)
#     print(pred_denorm_y)
#     print(actual_denorm_x)
#     print(actual_denorm_y)

#     plt.scatter(actual_denorm_y, actual_denorm_x, label='Actual', color='black', alpha=0.5)
# # plt.scatter(all_preds_denorm[:, 1], all_preds_denorm[:, 0], label='Predicted', color='blue', alpha=0.5)

#     over100 = 0
#     under100 = 0
#     under50 = 0
#     under25 = 0

#     all_over100 = []
#     all_under100 = []
#     all_under50 = []
#     all_under25 = []
#     average_dist = 0.0

#     dists = []

#     for i in range(len(actual_denorm_x)):
#         pred_denorm_loc = (pred_denorm_x[i], pred_denorm_y[i])
#         actual_denorm_loc = (actual_denorm_x[i], actual_denorm_y[i])

#         dist = geodesic(actual_denorm_loc, pred_denorm_loc).meters
#         dists.append(dist)

#         if dist > 50:
#             over100 += 1
#             all_over100.append(pred_denorm_loc)
#         elif dist > 25:
#             under100 += 1
#             all_under100.append(pred_denorm_loc)
#         elif dist > 10:
#             under50 += 1
#             all_under50.append(pred_denorm_loc)
#         else:
#             under25 += 1
#             all_under25.append(pred_denorm_loc)

#         plt.plot(
#             [actual_denorm_y[i], pred_denorm_y[i]],
#             [actual_denorm_x[i], pred_denorm_x[i]],
#             color='grey',
#             alpha=0.5,
#             linewidth=0.5
#         )

#     dists = np.array(dists)

#     plt.scatter([y for x,y in all_over100], [x for x,y in all_over100], label=f'over 50m: {over100}', color='red', alpha=0.5)
#     plt.scatter([y for x,y in all_under100], [x for x,y in all_under100], label=f'under 50m: {under100}', color='orange', alpha=0.5)
#     plt.scatter([y for x,y in all_under50], [x for x,y in all_under50], label=f'under 25m: {under50}', color='green', alpha=0.5)
#     plt.scatter([y for x,y in all_under25], [x for x,y in all_under25], label=f'under 10m: {under25}', color='blue', alpha=0.5)


#     plt.legend()

#     plt.xlabel('Longitude')
#     plt.ylabel('Latitude')
#     plt.title('Actual vs. Predicted GPS Coordinates with Error Lines')
#     plt.show()

#     regions_enum = {0 : "fisher bennett",
#                     1 : "outer quad",
#                     2 : "outside football",
#                     3 : "chem building",
#                     4 : "top of walk",
#                     5 : "bottom of walk",
#                     6 : "chem courtyard",
#                     7 : "no assigned region"}

#     colors = {0:'red',
#             1:'orange',
#             2:'yellow',
#             3:'green',
#             4:'blue',
#             5:'purple',
#             6:'pink',
#             7:'black'}

#     for i in range(len(actual_denorm_x)):

#         plt.plot(
#             [actual_denorm_y[i], pred_denorm_y[i]],
#             [actual_denorm_x[i], pred_denorm_x[i]],
#             color='grey',
#             alpha=0.25,
#             linewidth=0.5
#         )

#     # plt.scatter([p[0] for p in pts], [p[1] for p in pts], s=15, c=[colors[i] for i in all_regions], edgecolors='black')
#     colors_lst = [colors[i] for i in all_regions]
#     plt.scatter(actual_denorm_y, actual_denorm_x, label='Actual', color=colors_lst, alpha=0.5)
#     plt.scatter(pred_denorm_y, pred_denorm_x, label='Predicted', color=colors_lst, alpha=0.5)
#     # plt.gca().invert_xaxis()

#     plt.show()

#     # Plot the distribution
#     plt.figure(figsize=(10, 6))
#     sns.histplot(dists, bins=30, kde=True, color='blue', alpha=0.7)

#     # Add labels and title
#     plt.title("Distribution of Geodesic Distances (Accuracy of Guesses)")
#     plt.xlabel("Geodesic Distance (meters)")
#     plt.ylabel("Frequency")

#     # Add mean and median lines for context
#     mean_distance = dists.mean()
#     median_distance = np.median(dists)
#     plt.axvline(mean_distance, color='red', linestyle='--', label=f'Mean: {mean_distance:.2f} meters')
#     plt.axvline(median_distance, color='green', linestyle='--', label=f'Median: {median_distance:.2f} meters')

#     plt.legend()
#     plt.grid(True)
#     plt.show()
Downloads last month

-

Downloads are not tracked for this model. How to track
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.
The model cannot be deployed to the HF Inference API: The model has no library tag.