|
--- |
|
license: apache-2.0 |
|
language: |
|
- en |
|
base_model: |
|
- meta-llama/Llama-3.1-8B-Instruct |
|
- meta-llama/Llama-2-7b |
|
pipeline_tag: question-answering |
|
tags: |
|
- medical |
|
- biology |
|
- genetics |
|
- bioinformatics |
|
--- |
|
|
|
|
|
**GP-GTP** is an open-weight genetic-phenotype knowledge language model. For "medical-genetic-information". |
|
|
|
**Arvix version**: [arXiv:2409.09825](https://doi.org/10.48550/arXiv.2409.09825) |
|
|
|
|
|
### Usage |
|
|
|
```python |
|
from transformers import AutoModelForCausalLM, BitsAndBytesConfig, HfArgumentParser, TrainingArguments |
|
from peft import AutoPeftModelForCausalLM |
|
from peft import PeftModel |
|
from peft import LoraConfig, get_peft_model |
|
|
|
#init |
|
parser = HfArgumentParser(ScriptArguments) |
|
script_args = parser.parse_args_into_dataclasses()[0] |
|
|
|
# specific the model to load |
|
# For GP-GPT small: |
|
script_args.model_name = "meta-llama/Llama-2-7b" |
|
script_args.peft_model_id = "./small/" |
|
|
|
# For GP-GPT base: |
|
script_args.model_name = "meta-llama/Meta-Llama-3.1-8B" |
|
script_args.peft_model_id = "./base/" |
|
|
|
# Cache model |
|
model = AutoModelForCausalLM.from_pretrained( |
|
script_args.model_name, |
|
#quantization_config=quantization_config, # activate when using quantization setting |
|
device_map=device_map, |
|
torch_dtype=torch_dtype, |
|
use_auth_token=False, |
|
) |
|
|
|
#load PEFT adapter |
|
if script_args.peft_model_id is not None: |
|
peft_model_id = script_args.peft_model_id |
|
model = PeftModel.from_pretrained(model, peft_model_id) |
|
model = model.merge_and_unload() |