yolo_finetuned_fruits

This model is a fine-tuned version of hustvl/yolos-tiny on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.8075
  • Map: 0.5492
  • Map 50: 0.8129
  • Map 75: 0.6184
  • Map Small: -1.0
  • Map Medium: 0.5412
  • Map Large: 0.5745
  • Mar 1: 0.4367
  • Mar 10: 0.7285
  • Mar 100: 0.7829
  • Mar Small: -1.0
  • Mar Medium: 0.7643
  • Mar Large: 0.7895
  • Map Banana: 0.4035
  • Mar 100 Banana: 0.73
  • Map Orange: 0.5513
  • Mar 100 Orange: 0.7929
  • Map Apple: 0.6929
  • Mar 100 Apple: 0.8257

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 4
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: cosine
  • num_epochs: 30

Training results

Training Loss Epoch Step Validation Loss Map Map 50 Map 75 Map Small Map Medium Map Large Mar 1 Mar 10 Mar 100 Mar Small Mar Medium Mar Large Map Banana Mar 100 Banana Map Orange Mar 100 Orange Map Apple Mar 100 Apple
No log 1.0 60 2.1930 0.0025 0.0072 0.0016 -1.0 0.0007 0.0035 0.0161 0.0825 0.2242 -1.0 0.0429 0.2487 0.0015 0.2925 0.0 0.0 0.0061 0.38
No log 2.0 120 1.9326 0.011 0.0299 0.0064 -1.0 0.0044 0.0134 0.0758 0.2107 0.3813 -1.0 0.1214 0.416 0.0137 0.45 0.0062 0.1738 0.0131 0.52
No log 3.0 180 1.6307 0.0352 0.0947 0.0195 -1.0 0.0531 0.0355 0.1342 0.303 0.503 -1.0 0.3214 0.5277 0.0413 0.5375 0.0424 0.3714 0.0218 0.6
No log 4.0 240 1.6542 0.0558 0.1344 0.0522 -1.0 0.1515 0.0482 0.0944 0.2671 0.4604 -1.0 0.35 0.4725 0.0524 0.5075 0.0662 0.3881 0.0487 0.4857
No log 5.0 300 1.6691 0.0388 0.1063 0.0274 -1.0 0.0944 0.0364 0.1583 0.2932 0.4751 -1.0 0.35 0.4917 0.043 0.5 0.0359 0.3452 0.0374 0.58
No log 6.0 360 1.1086 0.0826 0.1345 0.0841 -1.0 0.2117 0.0861 0.2797 0.4782 0.7029 -1.0 0.5929 0.7177 0.071 0.7225 0.1168 0.6262 0.06 0.76
No log 7.0 420 1.1675 0.0814 0.165 0.072 -1.0 0.2427 0.086 0.2683 0.4722 0.6522 -1.0 0.4929 0.6746 0.0837 0.6575 0.0851 0.5619 0.0754 0.7371
No log 8.0 480 1.0365 0.1206 0.207 0.1248 -1.0 0.2508 0.1171 0.3042 0.5348 0.7123 -1.0 0.6143 0.7282 0.0767 0.6875 0.1441 0.681 0.1411 0.7686
1.512 9.0 540 1.0794 0.1506 0.2487 0.1703 -1.0 0.2685 0.1558 0.3506 0.5771 0.6842 -1.0 0.4857 0.7162 0.0875 0.645 0.1822 0.6619 0.1823 0.7457
1.512 10.0 600 0.9685 0.2052 0.3178 0.2417 -1.0 0.3075 0.2088 0.3638 0.5795 0.713 -1.0 0.5571 0.7386 0.1142 0.66 0.2011 0.6619 0.3002 0.8171
1.512 11.0 660 1.0193 0.2702 0.4348 0.3242 -1.0 0.3423 0.287 0.3652 0.6083 0.6889 -1.0 0.6429 0.699 0.1441 0.64 0.263 0.6952 0.4036 0.7314
1.512 12.0 720 0.9402 0.3339 0.5175 0.3808 -1.0 0.358 0.3523 0.3898 0.637 0.7244 -1.0 0.6286 0.7421 0.2116 0.67 0.3413 0.7262 0.4489 0.7771
1.512 13.0 780 0.9065 0.4067 0.6265 0.4574 -1.0 0.5061 0.4159 0.3831 0.6531 0.7409 -1.0 0.6286 0.76 0.2899 0.705 0.3526 0.7262 0.5776 0.7914
1.512 14.0 840 0.8992 0.4333 0.6571 0.4951 -1.0 0.5391 0.4405 0.3823 0.679 0.7469 -1.0 0.6929 0.7585 0.2879 0.6975 0.4142 0.7405 0.5978 0.8029
1.512 15.0 900 0.9158 0.4523 0.6711 0.5006 -1.0 0.567 0.457 0.3885 0.6792 0.7503 -1.0 0.7429 0.7554 0.3111 0.6875 0.4015 0.7548 0.6444 0.8086
1.512 16.0 960 0.8610 0.4903 0.7499 0.5371 -1.0 0.5782 0.4965 0.4083 0.6934 0.7603 -1.0 0.75 0.7656 0.3468 0.6975 0.4646 0.769 0.6594 0.8143
0.8176 17.0 1020 0.8541 0.5026 0.7497 0.5756 -1.0 0.6024 0.509 0.4079 0.7004 0.7741 -1.0 0.7429 0.783 0.363 0.7175 0.5092 0.7905 0.6356 0.8143
0.8176 18.0 1080 0.8627 0.4944 0.7614 0.5615 -1.0 0.58 0.5081 0.4067 0.6975 0.7571 -1.0 0.7 0.7686 0.3636 0.715 0.501 0.7476 0.6185 0.8086
0.8176 19.0 1140 0.8270 0.5227 0.7928 0.5967 -1.0 0.589 0.5339 0.4137 0.7212 0.7767 -1.0 0.7143 0.789 0.3864 0.735 0.5444 0.781 0.6372 0.8143
0.8176 20.0 1200 0.8100 0.5428 0.807 0.629 -1.0 0.5925 0.561 0.4291 0.7177 0.7721 -1.0 0.7571 0.7787 0.4188 0.7125 0.553 0.7952 0.6567 0.8086
0.8176 21.0 1260 0.8255 0.5424 0.8012 0.6145 -1.0 0.5723 0.5611 0.4269 0.7175 0.7674 -1.0 0.7286 0.7775 0.3995 0.7075 0.5572 0.7833 0.6703 0.8114
0.8176 22.0 1320 0.8203 0.5447 0.8214 0.6081 -1.0 0.5544 0.567 0.4308 0.7186 0.7785 -1.0 0.75 0.7863 0.3999 0.7275 0.5527 0.7881 0.6815 0.82
0.8176 23.0 1380 0.8116 0.555 0.8196 0.6291 -1.0 0.5953 0.569 0.4345 0.7297 0.7793 -1.0 0.75 0.7874 0.4045 0.725 0.5768 0.7929 0.6836 0.82
0.8176 24.0 1440 0.8178 0.5431 0.7922 0.6252 -1.0 0.5631 0.5629 0.4217 0.7217 0.7755 -1.0 0.7357 0.7849 0.3973 0.7275 0.5501 0.7905 0.6819 0.8086
0.6165 25.0 1500 0.8056 0.5533 0.8126 0.6213 -1.0 0.569 0.5718 0.43 0.7249 0.779 -1.0 0.75 0.787 0.4049 0.7275 0.5546 0.781 0.7002 0.8286
0.6165 26.0 1560 0.7900 0.556 0.8143 0.6332 -1.0 0.552 0.5828 0.4417 0.7364 0.7812 -1.0 0.7643 0.7873 0.418 0.7325 0.55 0.7881 0.7002 0.8229
0.6165 27.0 1620 0.8072 0.5466 0.8125 0.6105 -1.0 0.5431 0.5733 0.4367 0.7327 0.7787 -1.0 0.7571 0.786 0.4051 0.725 0.5465 0.7881 0.688 0.8229
0.6165 28.0 1680 0.8077 0.5481 0.8135 0.6199 -1.0 0.5418 0.5725 0.4351 0.7263 0.783 -1.0 0.7643 0.7899 0.4018 0.7275 0.5497 0.7929 0.6927 0.8286
0.6165 29.0 1740 0.8085 0.5488 0.812 0.618 -1.0 0.541 0.574 0.4367 0.7277 0.7837 -1.0 0.7643 0.7905 0.4021 0.73 0.5514 0.7952 0.6929 0.8257
0.6165 30.0 1800 0.8075 0.5492 0.8129 0.6184 -1.0 0.5412 0.5745 0.4367 0.7285 0.7829 -1.0 0.7643 0.7895 0.4035 0.73 0.5513 0.7929 0.6929 0.8257

Framework versions

  • Transformers 4.51.1
  • Pytorch 2.6.0+cu124
  • Datasets 2.14.4
  • Tokenizers 0.21.1
Downloads last month
7
Safetensors
Model size
6.47M params
Tensor type
F32
ยท
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Model tree for Igmata/yolo_finetuned_fruits

Base model

hustvl/yolos-tiny
Finetuned
(31)
this model