ModernBERT Embed base Legal Matryoshka
This is a sentence-transformers model finetuned from google-bert/bert-base-uncased on the json dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: google-bert/bert-base-uncased
- Maximum Sequence Length: 512 tokens
- Output Dimensionality: 768 dimensions
- Similarity Function: Cosine Similarity
- Training Dataset:
- json
- Language: en
- License: apache-2.0
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("IoannisKat1/bert-base-uncased-legal-matryoshka")
# Run inference
sentences = [
'What remedy is available to a data subject if their rights are infringed?',
'1.Without prejudice to any available administrative or non-judicial remedy, including the right to lodge a complaint with a supervisory authority pursuant to Article 77, each data subject shall have the right to an effective judicial remedy where he or she considers that his or her rights under this Regulation have been infringed as a result of the processing of his or her personal data in non-compliance with this Regulation.\n2.Proceedings against a controller or a processor shall be brought before the courts of the Member State where the controller or processor has an establishment. Alternatively, such proceedings may be brought before the courts of the Member State where the data subject has his or her habitual residence, unless the controller or processor is a public authority of a Member State acting in the exercise of its public powers. 4.5.2016 L 119/80 (1) Regulation (EC) No 1049/2001 of the European Parliament and of the Council of 30 May 2001 regarding public access to European Parliament, Council and Commission documents (OJ L 145, 31.5.2001, p. 43).',
'1.The controller shall consult the supervisory authority prior to processing where a data protection impact assessment under Article 35 indicates that the processing would result in a high risk in the absence of measures taken by the controller to mitigate the risk.\n2.Where the supervisory authority is of the opinion that the intended processing referred to in paragraph 1 would infringe this Regulation, in particular where the controller has insufficiently identified or mitigated the risk, the supervisory authority shall, within period of up to eight weeks of receipt of the request for consultation, provide written advice to the controller and, where applicable to the processor, and may use any of its powers referred to in Article 58. That period may be extended by six weeks, taking into account the complexity of the intended processing. The supervisory authority shall inform the controller and, where applicable, the processor, of any such extension within one month of receipt of the request for consultation together with the reasons for the delay. Those periods may be suspended until the supervisory authority has obtained information it has requested for the purposes of the consultation.\n3.When consulting the supervisory authority pursuant to paragraph 1, the controller shall provide the supervisory authority with: (a) where applicable, the respective responsibilities of the controller, joint controllers and processors involved in the processing, in particular for processing within a group of undertakings; (b) the purposes and means of the intended processing; (c) the measures and safeguards provided to protect the rights and freedoms of data subjects pursuant to this Regulation; (d) where applicable, the contact details of the data protection officer; 4.5.2016 L 119/54 (e) the data protection impact assessment provided for in Article 35; and (f) any other information requested by the supervisory authority.\n4.Member States shall consult the supervisory authority during the preparation of a proposal for a legislative measure to be adopted by a national parliament, or of a regulatory measure based on such a legislative measure, which relates to processing.\n5.Notwithstanding paragraph 1, Member State law may require controllers to consult with, and obtain prior authorisation from, the supervisory authority in relation to processing by a controller for the performance of a task carried out by the controller in the public interest, including processing in relation to social protection and public health',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Evaluation
Metrics
Information Retrieval
- Dataset:
dim_768
- Evaluated with
InformationRetrievalEvaluator
with these parameters:{ "truncate_dim": 768 }
Metric | Value |
---|---|
cosine_accuracy@1 | 0.3914 |
cosine_accuracy@3 | 0.4268 |
cosine_accuracy@5 | 0.452 |
cosine_accuracy@10 | 0.5202 |
cosine_precision@1 | 0.3914 |
cosine_precision@3 | 0.3754 |
cosine_precision@5 | 0.349 |
cosine_precision@10 | 0.3058 |
cosine_recall@1 | 0.0832 |
cosine_recall@3 | 0.2048 |
cosine_recall@5 | 0.27 |
cosine_recall@10 | 0.3782 |
cosine_ndcg@10 | 0.4456 |
cosine_mrr@10 | 0.4171 |
cosine_map@100 | 0.4895 |
Information Retrieval
- Dataset:
dim_512
- Evaluated with
InformationRetrievalEvaluator
with these parameters:{ "truncate_dim": 512 }
Metric | Value |
---|---|
cosine_accuracy@1 | 0.3889 |
cosine_accuracy@3 | 0.4268 |
cosine_accuracy@5 | 0.4495 |
cosine_accuracy@10 | 0.5051 |
cosine_precision@1 | 0.3889 |
cosine_precision@3 | 0.3746 |
cosine_precision@5 | 0.3505 |
cosine_precision@10 | 0.3033 |
cosine_recall@1 | 0.081 |
cosine_recall@3 | 0.2 |
cosine_recall@5 | 0.2687 |
cosine_recall@10 | 0.3701 |
cosine_ndcg@10 | 0.4412 |
cosine_mrr@10 | 0.4138 |
cosine_map@100 | 0.4871 |
Information Retrieval
- Dataset:
dim_256
- Evaluated with
InformationRetrievalEvaluator
with these parameters:{ "truncate_dim": 256 }
Metric | Value |
---|---|
cosine_accuracy@1 | 0.3813 |
cosine_accuracy@3 | 0.4167 |
cosine_accuracy@5 | 0.4343 |
cosine_accuracy@10 | 0.4949 |
cosine_precision@1 | 0.3813 |
cosine_precision@3 | 0.367 |
cosine_precision@5 | 0.3394 |
cosine_precision@10 | 0.2957 |
cosine_recall@1 | 0.079 |
cosine_recall@3 | 0.1982 |
cosine_recall@5 | 0.2594 |
cosine_recall@10 | 0.3582 |
cosine_ndcg@10 | 0.4305 |
cosine_mrr@10 | 0.4046 |
cosine_map@100 | 0.4765 |
Information Retrieval
- Dataset:
dim_128
- Evaluated with
InformationRetrievalEvaluator
with these parameters:{ "truncate_dim": 128 }
Metric | Value |
---|---|
cosine_accuracy@1 | 0.3889 |
cosine_accuracy@3 | 0.4066 |
cosine_accuracy@5 | 0.4268 |
cosine_accuracy@10 | 0.4899 |
cosine_precision@1 | 0.3889 |
cosine_precision@3 | 0.3712 |
cosine_precision@5 | 0.3429 |
cosine_precision@10 | 0.2987 |
cosine_recall@1 | 0.0763 |
cosine_recall@3 | 0.1924 |
cosine_recall@5 | 0.2556 |
cosine_recall@10 | 0.3572 |
cosine_ndcg@10 | 0.4299 |
cosine_mrr@10 | 0.4078 |
cosine_map@100 | 0.4727 |
Information Retrieval
- Dataset:
dim_64
- Evaluated with
InformationRetrievalEvaluator
with these parameters:{ "truncate_dim": 64 }
Metric | Value |
---|---|
cosine_accuracy@1 | 0.3561 |
cosine_accuracy@3 | 0.3889 |
cosine_accuracy@5 | 0.404 |
cosine_accuracy@10 | 0.4419 |
cosine_precision@1 | 0.3561 |
cosine_precision@3 | 0.3426 |
cosine_precision@5 | 0.3182 |
cosine_precision@10 | 0.272 |
cosine_recall@1 | 0.0732 |
cosine_recall@3 | 0.1824 |
cosine_recall@5 | 0.2429 |
cosine_recall@10 | 0.3266 |
cosine_ndcg@10 | 0.3954 |
cosine_mrr@10 | 0.375 |
cosine_map@100 | 0.4422 |
Training Details
Training Dataset
json
- Dataset: json
- Size: 1,580 training samples
- Columns:
anchor
andpositive
- Approximate statistics based on the first 1000 samples:
anchor positive type string string details - min: 7 tokens
- mean: 15.29 tokens
- max: 34 tokens
- min: 31 tokens
- mean: 361.9 tokens
- max: 512 tokens
- Samples:
anchor positive By when does each Member State need to notify the Commission of the provisions of its law adopted pursuant to this Chapter?
1.Each Member State shall provide for one or more independent public authorities to be responsible for monitoring the application of this Regulation, in order to protect the fundamental rights and freedoms of natural persons in relation to processing and to facilitate the free flow of personal data within the Union (‘supervisory authority’).
2.Each supervisory authority shall contribute to the consistent application of this Regulation throughout the Union. For that purpose, the supervisory authorities shall cooperate with each other and the Commission in accordance with Chapter VII.
3.Where more than one supervisory authority is established in a Member State, that Member State shall designate the supervisory authority which is to represent those authorities in the Board and shall set out the mechanism to ensure compliance by the other authorities with the rules relating to the consistency mechanism referred to in Article 63
4.Each Member State shall notify to the Commission the provisi...How much was the defendant ordered to pay?
Court (Civil/Criminal):
Provisions:
Time of commission of the act:
Outcome (not guilty, guilty): ORDERS the defendant to pay the plaintiff the amount of two thousand four hundred thirty-four euros and eighty-three cents (€2,434.83) with legal interest from the service of the lawsuit.
Reasoning: Law 4537/2018 introduces mandatory provisions in favor of users, as according to Article 103, payment service providers are prohibited from deviating from the provisions to the detriment of payment service users, unless the possibility of deviation is expressly provided, and they can decide to offer only more favorable terms to payment service users. Under this law and its provisions, providers are only liable when there are unusual and unforeseen circumstances beyond the control of the party invoking them, and whose consequences could not have been avoided despite efforts to the contrary. However, operational risks and security risks of the system do not constitute unusual and unforeseen circu...On what date did the judge grant the motion?
1.A transfer of personal data to a third country or an international organisation may take place where the Commission has decided that the third country, a territory or one or more specified sectors within that third country, or the international organisation in question ensures an adequate level of protection. Such a transfer shall not require any specific authorisation.
2.When assessing the adequacy of the level of protection, the Commission shall, in particular, take account of the following elements: (a) the rule of law, respect for human rights and fundamental freedoms, relevant legislation, both general and sectoral, including concerning public security, defence, national security and criminal law and the access of public authorities to personal data, as well as the implementation of such legislation, data protection rules, professional rules and security measures, including rules for the onward transfer of personal data to another third country or international organisation whi... - Loss:
MatryoshkaLoss
with these parameters:{ "loss": "MultipleNegativesRankingLoss", "matryoshka_dims": [ 768, 512, 256, 128, 64 ], "matryoshka_weights": [ 1, 1, 1, 1, 1 ], "n_dims_per_step": -1 }
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy
: epochgradient_accumulation_steps
: 2learning_rate
: 2e-05num_train_epochs
: 15lr_scheduler_type
: cosinewarmup_ratio
: 0.1bf16
: Truetf32
: Trueload_best_model_at_end
: Trueoptim
: adamw_torch_fusedbatch_sampler
: no_duplicates
All Hyperparameters
Click to expand
overwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: epochprediction_loss_only
: Trueper_device_train_batch_size
: 8per_device_eval_batch_size
: 8per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 2eval_accumulation_steps
: Nonetorch_empty_cache_steps
: Nonelearning_rate
: 2e-05weight_decay
: 0.0adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1.0num_train_epochs
: 15max_steps
: -1lr_scheduler_type
: cosinelr_scheduler_kwargs
: {}warmup_ratio
: 0.1warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Truefp16
: Falsefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Truelocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 0dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Trueignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}tp_size
: 0fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torch_fusedoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Nonehub_always_push
: Falsegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseinclude_for_metrics
: []eval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falseeval_on_start
: Falseuse_liger_kernel
: Falseeval_use_gather_object
: Falseaverage_tokens_across_devices
: Falseprompts
: Nonebatch_sampler
: no_duplicatesmulti_dataset_batch_sampler
: proportional
Training Logs
Click to expand
Epoch | Step | Training Loss | dim_768_cosine_ndcg@10 | dim_512_cosine_ndcg@10 | dim_256_cosine_ndcg@10 | dim_128_cosine_ndcg@10 | dim_64_cosine_ndcg@10 |
---|---|---|---|---|---|---|---|
0.1010 | 10 | 15.676 | - | - | - | - | - |
0.2020 | 20 | 15.319 | - | - | - | - | - |
0.3030 | 30 | 14.9757 | - | - | - | - | - |
0.4040 | 40 | 13.2445 | - | - | - | - | - |
0.5051 | 50 | 11.1148 | - | - | - | - | - |
0.6061 | 60 | 10.5683 | - | - | - | - | - |
0.7071 | 70 | 9.8032 | - | - | - | - | - |
0.8081 | 80 | 8.894 | - | - | - | - | - |
0.9091 | 90 | 8.8733 | - | - | - | - | - |
1.0 | 99 | - | 0.3214 | 0.3206 | 0.2969 | 0.2776 | 0.2518 |
1.0101 | 100 | 8.8753 | - | - | - | - | - |
1.1111 | 110 | 6.7814 | - | - | - | - | - |
1.2121 | 120 | 6.436 | - | - | - | - | - |
1.3131 | 130 | 6.02 | - | - | - | - | - |
1.4141 | 140 | 7.5173 | - | - | - | - | - |
1.5152 | 150 | 6.3509 | - | - | - | - | - |
1.6162 | 160 | 5.9486 | - | - | - | - | - |
1.7172 | 170 | 5.6732 | - | - | - | - | - |
1.8182 | 180 | 5.2878 | - | - | - | - | - |
1.9192 | 190 | 5.2841 | - | - | - | - | - |
2.0 | 198 | - | 0.3956 | 0.4048 | 0.3743 | 0.3492 | 0.2884 |
2.0202 | 200 | 5.3054 | - | - | - | - | - |
2.1212 | 210 | 2.8915 | - | - | - | - | - |
2.2222 | 220 | 4.0363 | - | - | - | - | - |
2.3232 | 230 | 4.0412 | - | - | - | - | - |
2.4242 | 240 | 4.0101 | - | - | - | - | - |
2.5253 | 250 | 3.8038 | - | - | - | - | - |
2.6263 | 260 | 3.5217 | - | - | - | - | - |
2.7273 | 270 | 3.143 | - | - | - | - | - |
2.8283 | 280 | 5.5051 | - | - | - | - | - |
2.9293 | 290 | 3.2826 | - | - | - | - | - |
3.0 | 297 | - | 0.4042 | 0.3981 | 0.3909 | 0.3646 | 0.3170 |
3.0303 | 300 | 3.0156 | - | - | - | - | - |
3.1313 | 310 | 2.2537 | - | - | - | - | - |
3.2323 | 320 | 3.3127 | - | - | - | - | - |
3.3333 | 330 | 2.5861 | - | - | - | - | - |
3.4343 | 340 | 1.7786 | - | - | - | - | - |
3.5354 | 350 | 2.5512 | - | - | - | - | - |
3.6364 | 360 | 2.0074 | - | - | - | - | - |
3.7374 | 370 | 2.4396 | - | - | - | - | - |
3.8384 | 380 | 2.6935 | - | - | - | - | - |
3.9394 | 390 | 1.8119 | - | - | - | - | - |
4.0101 | 397 | - | 0.4304 | 0.4282 | 0.4139 | 0.3951 | 0.3643 |
4.0303 | 400 | 2.3398 | - | - | - | - | - |
4.1313 | 410 | 1.6697 | - | - | - | - | - |
4.2323 | 420 | 1.3835 | - | - | - | - | - |
4.3333 | 430 | 1.7774 | - | - | - | - | - |
4.4343 | 440 | 1.6399 | - | - | - | - | - |
4.5354 | 450 | 1.7386 | - | - | - | - | - |
4.6364 | 460 | 2.3151 | - | - | - | - | - |
4.7374 | 470 | 1.9067 | - | - | - | - | - |
4.8384 | 480 | 1.9133 | - | - | - | - | - |
4.9394 | 490 | 2.2215 | - | - | - | - | - |
5.0 | 496 | - | 0.4255 | 0.4204 | 0.4210 | 0.4062 | 0.3682 |
5.0404 | 500 | 1.898 | - | - | - | - | - |
5.1414 | 510 | 1.396 | - | - | - | - | - |
5.2424 | 520 | 0.8949 | - | - | - | - | - |
5.3434 | 530 | 1.4482 | - | - | - | - | - |
5.4444 | 540 | 1.6391 | - | - | - | - | - |
5.5455 | 550 | 1.9564 | - | - | - | - | - |
5.6465 | 560 | 1.2331 | - | - | - | - | - |
5.7475 | 570 | 1.813 | - | - | - | - | - |
5.8485 | 580 | 1.4363 | - | - | - | - | - |
5.9495 | 590 | 1.3519 | - | - | - | - | - |
6.0 | 595 | - | 0.4254 | 0.4294 | 0.4212 | 0.4196 | 0.3934 |
6.0505 | 600 | 1.1575 | - | - | - | - | - |
6.1515 | 610 | 0.9375 | - | - | - | - | - |
6.2525 | 620 | 0.9556 | - | - | - | - | - |
6.3535 | 630 | 1.7873 | - | - | - | - | - |
6.4545 | 640 | 0.6363 | - | - | - | - | - |
6.5556 | 650 | 0.7925 | - | - | - | - | - |
6.6566 | 660 | 1.5787 | - | - | - | - | - |
6.7576 | 670 | 1.274 | - | - | - | - | - |
6.8586 | 680 | 1.3011 | - | - | - | - | - |
6.9596 | 690 | 0.7303 | - | - | - | - | - |
7.0 | 694 | - | 0.4317 | 0.4452 | 0.4301 | 0.4284 | 0.4019 |
7.0606 | 700 | 0.6973 | - | - | - | - | - |
7.1616 | 710 | 0.6512 | - | - | - | - | - |
7.2626 | 720 | 0.5386 | - | - | - | - | - |
7.3636 | 730 | 0.6079 | - | - | - | - | - |
7.4646 | 740 | 1.1747 | - | - | - | - | - |
7.5657 | 750 | 1.1719 | - | - | - | - | - |
7.6667 | 760 | 0.5889 | - | - | - | - | - |
7.7677 | 770 | 0.8939 | - | - | - | - | - |
7.8687 | 780 | 1.0032 | - | - | - | - | - |
7.9697 | 790 | 0.5862 | - | - | - | - | - |
8.0 | 793 | - | 0.4456 | 0.4412 | 0.4305 | 0.4299 | 0.3954 |
8.0707 | 800 | 0.8925 | - | - | - | - | - |
8.1717 | 810 | 1.2382 | - | - | - | - | - |
8.2727 | 820 | 0.6373 | - | - | - | - | - |
8.3737 | 830 | 0.9514 | - | - | - | - | - |
8.4747 | 840 | 0.4652 | - | - | - | - | - |
8.5758 | 850 | 0.9173 | - | - | - | - | - |
8.6768 | 860 | 1.0672 | - | - | - | - | - |
8.7778 | 870 | 0.4503 | - | - | - | - | - |
8.8788 | 880 | 0.5905 | - | - | - | - | - |
8.9798 | 890 | 0.7086 | - | - | - | - | - |
9.0 | 892 | - | 0.4299 | 0.4240 | 0.4279 | 0.4073 | 0.3947 |
9.0808 | 900 | 0.3295 | - | - | - | - | - |
9.1818 | 910 | 0.6795 | - | - | - | - | - |
9.2828 | 920 | 0.6485 | - | - | - | - | - |
9.3838 | 930 | 0.3027 | - | - | - | - | - |
9.4848 | 940 | 0.3273 | - | - | - | - | - |
9.5859 | 950 | 1.3033 | - | - | - | - | - |
9.6869 | 960 | 0.3657 | - | - | - | - | - |
9.7879 | 970 | 0.6145 | - | - | - | - | - |
9.8889 | 980 | 0.4529 | - | - | - | - | - |
9.9899 | 990 | 0.6022 | - | - | - | - | - |
10.0 | 991 | - | 0.4425 | 0.4340 | 0.4291 | 0.4181 | 0.4115 |
-1 | -1 | - | 0.4456 | 0.4412 | 0.4305 | 0.4299 | 0.3954 |
- The bold row denotes the saved checkpoint.
Framework Versions
- Python: 3.11.13
- Sentence Transformers: 4.1.0
- Transformers: 4.51.3
- PyTorch: 2.6.0+cu124
- Accelerate: 1.8.1
- Datasets: 4.0.0
- Tokenizers: 0.21.2
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
MatryoshkaLoss
@misc{kusupati2024matryoshka,
title={Matryoshka Representation Learning},
author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
year={2024},
eprint={2205.13147},
archivePrefix={arXiv},
primaryClass={cs.LG}
}
MultipleNegativesRankingLoss
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
- Downloads last month
- 3
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
🙋
Ask for provider support
Model tree for IoannisKat1/bert-base-uncased-legal-matryoshka
Base model
google-bert/bert-base-uncasedEvaluation results
- Cosine Accuracy@1 on dim 768self-reported0.391
- Cosine Accuracy@3 on dim 768self-reported0.427
- Cosine Accuracy@5 on dim 768self-reported0.452
- Cosine Accuracy@10 on dim 768self-reported0.520
- Cosine Precision@1 on dim 768self-reported0.391
- Cosine Precision@3 on dim 768self-reported0.375
- Cosine Precision@5 on dim 768self-reported0.349
- Cosine Precision@10 on dim 768self-reported0.306
- Cosine Recall@1 on dim 768self-reported0.083
- Cosine Recall@3 on dim 768self-reported0.205