ModernBERT Embed base Legal Matryoshka
This is a sentence-transformers model finetuned from nlpaueb/legal-bert-base-uncased on the json dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: nlpaueb/legal-bert-base-uncased
- Maximum Sequence Length: 512 tokens
- Output Dimensionality: 768 dimensions
- Similarity Function: Cosine Similarity
- Training Dataset:
- json
- Language: en
- License: apache-2.0
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("IoannisKat1/legal-bert-base-uncased-legal-matryoshka")
# Run inference
sentences = [
'What should be established by law?',
'Where a Member State establishes several supervisory authorities, it should establish by law mechanisms for ensuring the effective participation of those supervisory authorities in the consistency mechanism. That Member State should in particular designate the supervisory authority which functions as a single contact point for the effective participation of those authorities in the mechanism, to ensure swift and smooth cooperation with other supervisory authorities, the Board and the Commission.',
"Any person who intentionally produces, distributes, publishes, imports or exports, transfers, offers, sells or in other way distributes, supplies with, purchases, obtains, acquires or owns child pornographic material or spreads or broadcasts information concerning executions of such actions, is sentenced to at least one year’s imprisonment and a fine of ten to one hundred thousand Euros.\nAny person who intentionally produces, offers, sells or in any way distributes, transfers, purchases, obtains or acquires child pornographic material or broadcasts information concerning the executions of such actions through a computer system or through the Internet is sentenced to at least two years’ imprisonment and a fine of fifty to three hundred thousand Euros.\nPornographic material in the sense of the above mentioned paragraphs consists of any representation or an actual or virtual depiction, in electronic or any other form of material, of the body of or part of the body of a minor, aimed at causing sexual stimulation, as well as a recording or depiction of an actual or virtual carnal act that arises sexual stimulation by or with a minor.\nActions of the first and second paragraph are punishable by imprisonment of up to ten years and a fine of fifty to one hundred thousand Euros if: are professionally or habitually committed; the production of child pornographic material is connected to the exploiting of the need, mental or intellectual weakness or corporal dysfunction of the minor due to organic disease or by exercise or threat of violence or using a minor under the age of fifteen.\nIf such an act as described in case b) resulted in grievous bodily harm to the victim, it will entail a sentence of at least ten years' imprisonment and a fine of one hundred thousand to five hundred thousand Euros. If, however, such an act resulted in the victim’s death, then life imprisonment is imposed.\n",
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Evaluation
Metrics
Information Retrieval
- Dataset:
dim_768
- Evaluated with
InformationRetrievalEvaluator
with these parameters:{ "truncate_dim": 768 }
Metric | Value |
---|---|
cosine_accuracy@1 | 0.4293 |
cosine_accuracy@3 | 0.4773 |
cosine_accuracy@5 | 0.5101 |
cosine_accuracy@10 | 0.5581 |
cosine_precision@1 | 0.4293 |
cosine_precision@3 | 0.4259 |
cosine_precision@5 | 0.4051 |
cosine_precision@10 | 0.3664 |
cosine_recall@1 | 0.0752 |
cosine_recall@3 | 0.2024 |
cosine_recall@5 | 0.2746 |
cosine_recall@10 | 0.3948 |
cosine_ndcg@10 | 0.4898 |
cosine_mrr@10 | 0.4592 |
cosine_map@100 | 0.5444 |
Information Retrieval
- Dataset:
dim_512
- Evaluated with
InformationRetrievalEvaluator
with these parameters:{ "truncate_dim": 512 }
Metric | Value |
---|---|
cosine_accuracy@1 | 0.4318 |
cosine_accuracy@3 | 0.4722 |
cosine_accuracy@5 | 0.5025 |
cosine_accuracy@10 | 0.5505 |
cosine_precision@1 | 0.4318 |
cosine_precision@3 | 0.4276 |
cosine_precision@5 | 0.404 |
cosine_precision@10 | 0.3664 |
cosine_recall@1 | 0.0736 |
cosine_recall@3 | 0.2003 |
cosine_recall@5 | 0.2711 |
cosine_recall@10 | 0.3951 |
cosine_ndcg@10 | 0.4888 |
cosine_mrr@10 | 0.4594 |
cosine_map@100 | 0.5398 |
Information Retrieval
- Dataset:
dim_256
- Evaluated with
InformationRetrievalEvaluator
with these parameters:{ "truncate_dim": 256 }
Metric | Value |
---|---|
cosine_accuracy@1 | 0.4419 |
cosine_accuracy@3 | 0.4823 |
cosine_accuracy@5 | 0.5177 |
cosine_accuracy@10 | 0.5581 |
cosine_precision@1 | 0.4419 |
cosine_precision@3 | 0.4335 |
cosine_precision@5 | 0.4136 |
cosine_precision@10 | 0.376 |
cosine_recall@1 | 0.0769 |
cosine_recall@3 | 0.2004 |
cosine_recall@5 | 0.2718 |
cosine_recall@10 | 0.3917 |
cosine_ndcg@10 | 0.4978 |
cosine_mrr@10 | 0.4682 |
cosine_map@100 | 0.5495 |
Information Retrieval
- Dataset:
dim_128
- Evaluated with
InformationRetrievalEvaluator
with these parameters:{ "truncate_dim": 128 }
Metric | Value |
---|---|
cosine_accuracy@1 | 0.4394 |
cosine_accuracy@3 | 0.4747 |
cosine_accuracy@5 | 0.5101 |
cosine_accuracy@10 | 0.5581 |
cosine_precision@1 | 0.4394 |
cosine_precision@3 | 0.4293 |
cosine_precision@5 | 0.4116 |
cosine_precision@10 | 0.3803 |
cosine_recall@1 | 0.0736 |
cosine_recall@3 | 0.191 |
cosine_recall@5 | 0.2619 |
cosine_recall@10 | 0.3906 |
cosine_ndcg@10 | 0.4968 |
cosine_mrr@10 | 0.4652 |
cosine_map@100 | 0.5413 |
Information Retrieval
- Dataset:
dim_64
- Evaluated with
InformationRetrievalEvaluator
with these parameters:{ "truncate_dim": 64 }
Metric | Value |
---|---|
cosine_accuracy@1 | 0.4091 |
cosine_accuracy@3 | 0.4571 |
cosine_accuracy@5 | 0.4848 |
cosine_accuracy@10 | 0.5303 |
cosine_precision@1 | 0.4091 |
cosine_precision@3 | 0.4074 |
cosine_precision@5 | 0.3919 |
cosine_precision@10 | 0.3581 |
cosine_recall@1 | 0.0663 |
cosine_recall@3 | 0.1797 |
cosine_recall@5 | 0.2507 |
cosine_recall@10 | 0.3628 |
cosine_ndcg@10 | 0.4667 |
cosine_mrr@10 | 0.4371 |
cosine_map@100 | 0.5119 |
Training Details
Training Dataset
json
- Dataset: json
- Size: 1,580 training samples
- Columns:
anchor
andpositive
- Approximate statistics based on the first 1000 samples:
anchor positive type string string details - min: 7 tokens
- mean: 15.34 tokens
- max: 36 tokens
- min: 25 tokens
- mean: 354.97 tokens
- max: 512 tokens
- Samples:
anchor positive What are the consequences for unlawful interference with sensitive data?
Failure to notify the Authority of file establishment or permit changes is punished by up to three years’ imprisonment and a fine of one to five million Drachmas.
Maintaining a file without a permit or violating permit terms is punished by at least one year’s imprisonment and a fine of one to five million Drachmas.
Unauthorized file interconnection or without permit is punished by up to three years’ imprisonment and a fine of one to five million Drachmas.
Unlawful interference with personal data is punished by imprisonment and a fine; for sensitive data, at least one year’s imprisonment and a fine of one to ten million Drachmas.
Controllers who fail to comply with Authority decisions or violate data transfer rules face at least two years’ imprisonment and a fine of one to five million Drachmas.
If acts were committed for unlawful benefit or to cause harm, punishment is up to ten years’ imprisonment and a fine of two to ten million Drachmas.
If acts jeopardize democratic governance or n...What purposes could justify the controller being a private entity?
Where processing is carried out in accordance with a legal obligation to which the controller is subject or where processing is necessary for the performance of a task carried out in the public interest or in the exercise of official authority, the processing should have a basis in Union or Member State law. This Regulation does not require a specific law for each individual processing. A law as a basis for several processing operations based on a legal obligation to which the controller is subject or where processing is necessary for the performance of a task carried out in the public interest or in the exercise of an official authority may be sufficient. It should also be for Union or Member State law to determine the purpose of processing. Furthermore, that law could specify the general conditions of this Regulation governing the lawfulness of personal data processing, establish specifications for determining the controller, the type of personal data which are subject to the process...
What conditions need to be fulfilled by the independent supervisory authority overseeing churches and religious associations?
1.Where in a Member State, churches and religious associations or communities apply, at the time of entry into force of this Regulation, comprehensive rules relating to the protection of natural persons with regard to processing, such rules may continue to apply, provided that they are brought into line with this Regulation.
2.Churches and religious associations which apply comprehensive rules in accordance with paragraph 1 of this Article shall be subject to the supervision of an independent supervisory authority, which may be specific, provided that it fulfils the conditions laid down in Chapter VI of this Regulation. CHAPTER X Delegated acts and implementing acts - Loss:
MatryoshkaLoss
with these parameters:{ "loss": "MultipleNegativesRankingLoss", "matryoshka_dims": [ 768, 512, 256, 128, 64 ], "matryoshka_weights": [ 1, 1, 1, 1, 1 ], "n_dims_per_step": -1 }
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy
: epochgradient_accumulation_steps
: 2learning_rate
: 2e-05num_train_epochs
: 15lr_scheduler_type
: cosinewarmup_ratio
: 0.1bf16
: Truetf32
: Trueload_best_model_at_end
: Trueoptim
: adamw_torch_fusedbatch_sampler
: no_duplicates
All Hyperparameters
Click to expand
overwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: epochprediction_loss_only
: Trueper_device_train_batch_size
: 8per_device_eval_batch_size
: 8per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 2eval_accumulation_steps
: Nonetorch_empty_cache_steps
: Nonelearning_rate
: 2e-05weight_decay
: 0.0adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1.0num_train_epochs
: 15max_steps
: -1lr_scheduler_type
: cosinelr_scheduler_kwargs
: {}warmup_ratio
: 0.1warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Truefp16
: Falsefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Truelocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 0dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Trueignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}tp_size
: 0fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torch_fusedoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Nonehub_always_push
: Falsegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseinclude_for_metrics
: []eval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falseeval_on_start
: Falseuse_liger_kernel
: Falseeval_use_gather_object
: Falseaverage_tokens_across_devices
: Falseprompts
: Nonebatch_sampler
: no_duplicatesmulti_dataset_batch_sampler
: proportional
Training Logs
Click to expand
Epoch | Step | Training Loss | dim_768_cosine_ndcg@10 | dim_512_cosine_ndcg@10 | dim_256_cosine_ndcg@10 | dim_128_cosine_ndcg@10 | dim_64_cosine_ndcg@10 |
---|---|---|---|---|---|---|---|
0.1010 | 10 | 15.9718 | - | - | - | - | - |
0.2020 | 20 | 16.7853 | - | - | - | - | - |
0.3030 | 30 | 14.697 | - | - | - | - | - |
0.4040 | 40 | 13.9906 | - | - | - | - | - |
0.5051 | 50 | 14.0258 | - | - | - | - | - |
0.6061 | 60 | 12.5485 | - | - | - | - | - |
0.7071 | 70 | 11.0342 | - | - | - | - | - |
0.8081 | 80 | 10.2744 | - | - | - | - | - |
0.9091 | 90 | 8.8141 | - | - | - | - | - |
1.0 | 99 | - | 0.3632 | 0.3783 | 0.3431 | 0.3077 | 0.2759 |
1.0101 | 100 | 9.9451 | - | - | - | - | - |
1.1111 | 110 | 7.4968 | - | - | - | - | - |
1.2121 | 120 | 7.1261 | - | - | - | - | - |
1.3131 | 130 | 6.0039 | - | - | - | - | - |
1.4141 | 140 | 6.5453 | - | - | - | - | - |
1.5152 | 150 | 5.9298 | - | - | - | - | - |
1.6162 | 160 | 7.4043 | - | - | - | - | - |
1.7172 | 170 | 6.3976 | - | - | - | - | - |
1.8182 | 180 | 8.9042 | - | - | - | - | - |
1.9192 | 190 | 5.2542 | - | - | - | - | - |
2.0 | 198 | - | 0.3951 | 0.3888 | 0.3774 | 0.3611 | 0.3264 |
2.0202 | 200 | 5.0081 | - | - | - | - | - |
2.1212 | 210 | 5.7284 | - | - | - | - | - |
2.2222 | 220 | 4.2062 | - | - | - | - | - |
2.3232 | 230 | 3.9454 | - | - | - | - | - |
2.4242 | 240 | 3.5888 | - | - | - | - | - |
2.5253 | 250 | 3.7057 | - | - | - | - | - |
2.6263 | 260 | 3.4574 | - | - | - | - | - |
2.7273 | 270 | 4.1998 | - | - | - | - | - |
2.8283 | 280 | 4.3571 | - | - | - | - | - |
2.9293 | 290 | 3.0049 | - | - | - | - | - |
3.0 | 297 | - | 0.4155 | 0.4083 | 0.4056 | 0.4043 | 0.3717 |
3.0303 | 300 | 4.0507 | - | - | - | - | - |
3.1313 | 310 | 2.4514 | - | - | - | - | - |
3.2323 | 320 | 3.6131 | - | - | - | - | - |
3.3333 | 330 | 2.6191 | - | - | - | - | - |
3.4343 | 340 | 2.4375 | - | - | - | - | - |
3.5354 | 350 | 1.7928 | - | - | - | - | - |
3.6364 | 360 | 2.4522 | - | - | - | - | - |
3.7374 | 370 | 2.4557 | - | - | - | - | - |
3.8384 | 380 | 2.8036 | - | - | - | - | - |
3.9394 | 390 | 2.694 | - | - | - | - | - |
4.0 | 396 | - | 0.4491 | 0.4509 | 0.4484 | 0.4204 | 0.3830 |
4.0404 | 400 | 2.3715 | - | - | - | - | - |
4.1414 | 410 | 1.5032 | - | - | - | - | - |
4.2424 | 420 | 1.711 | - | - | - | - | - |
4.3434 | 430 | 1.7695 | - | - | - | - | - |
4.4444 | 440 | 2.2982 | - | - | - | - | - |
4.5455 | 450 | 1.6361 | - | - | - | - | - |
4.6465 | 460 | 2.3351 | - | - | - | - | - |
4.7475 | 470 | 1.6405 | - | - | - | - | - |
4.8485 | 480 | 1.0239 | - | - | - | - | - |
4.9495 | 490 | 1.6597 | - | - | - | - | - |
5.0 | 495 | - | 0.4354 | 0.4431 | 0.4320 | 0.4195 | 0.3964 |
5.0505 | 500 | 1.3434 | - | - | - | - | - |
5.1515 | 510 | 1.3611 | - | - | - | - | - |
5.2525 | 520 | 1.2637 | - | - | - | - | - |
5.3535 | 530 | 1.4342 | - | - | - | - | - |
5.4545 | 540 | 1.3777 | - | - | - | - | - |
5.5556 | 550 | 1.2341 | - | - | - | - | - |
5.6566 | 560 | 1.2177 | - | - | - | - | - |
5.7576 | 570 | 1.814 | - | - | - | - | - |
5.8586 | 580 | 1.7181 | - | - | - | - | - |
5.9596 | 590 | 1.2835 | - | - | - | - | - |
6.0 | 594 | - | 0.4588 | 0.4591 | 0.4743 | 0.4688 | 0.4174 |
6.0606 | 600 | 1.0944 | - | - | - | - | - |
6.1616 | 610 | 1.3022 | - | - | - | - | - |
6.2626 | 620 | 1.3066 | - | - | - | - | - |
6.3636 | 630 | 1.1161 | - | - | - | - | - |
6.4646 | 640 | 1.3089 | - | - | - | - | - |
6.5657 | 650 | 1.2599 | - | - | - | - | - |
6.6667 | 660 | 1.0028 | - | - | - | - | - |
6.7677 | 670 | 0.887 | - | - | - | - | - |
6.8687 | 680 | 1.0754 | - | - | - | - | - |
6.9697 | 690 | 1.2784 | - | - | - | - | - |
7.0 | 693 | - | 0.4627 | 0.4655 | 0.4676 | 0.4554 | 0.4359 |
7.0707 | 700 | 0.8864 | - | - | - | - | - |
7.1717 | 710 | 1.057 | - | - | - | - | - |
7.2727 | 720 | 1.3416 | - | - | - | - | - |
7.3737 | 730 | 0.5645 | - | - | - | - | - |
7.4747 | 740 | 0.6572 | - | - | - | - | - |
7.5758 | 750 | 1.0231 | - | - | - | - | - |
7.6768 | 760 | 0.7654 | - | - | - | - | - |
7.7778 | 770 | 0.8611 | - | - | - | - | - |
7.8788 | 780 | 1.3308 | - | - | - | - | - |
7.9798 | 790 | 0.6435 | - | - | - | - | - |
8.0 | 792 | - | 0.4793 | 0.4818 | 0.4767 | 0.4812 | 0.4439 |
8.0808 | 800 | 0.7799 | - | - | - | - | - |
8.1818 | 810 | 0.6171 | - | - | - | - | - |
8.2828 | 820 | 0.9222 | - | - | - | - | - |
8.3838 | 830 | 0.6862 | - | - | - | - | - |
8.4848 | 840 | 0.3412 | - | - | - | - | - |
8.5859 | 850 | 0.6021 | - | - | - | - | - |
8.6869 | 860 | 0.9747 | - | - | - | - | - |
8.7879 | 870 | 0.7557 | - | - | - | - | - |
8.8889 | 880 | 1.1181 | - | - | - | - | - |
8.9899 | 890 | 0.6717 | - | - | - | - | - |
9.0 | 891 | - | 0.4937 | 0.4823 | 0.4963 | 0.4796 | 0.4346 |
9.0909 | 900 | 0.4619 | - | - | - | - | - |
9.1919 | 910 | 0.5895 | - | - | - | - | - |
9.2929 | 920 | 0.618 | - | - | - | - | - |
9.3939 | 930 | 0.8326 | - | - | - | - | - |
9.4949 | 940 | 0.5188 | - | - | - | - | - |
9.5960 | 950 | 0.8664 | - | - | - | - | - |
9.6970 | 960 | 0.4766 | - | - | - | - | - |
9.7980 | 970 | 0.4169 | - | - | - | - | - |
9.8990 | 980 | 0.6648 | - | - | - | - | - |
10.0 | 990 | 0.7753 | 0.4764 | 0.4750 | 0.4837 | 0.4861 | 0.4444 |
10.1010 | 1000 | 0.347 | - | - | - | - | - |
10.2020 | 1010 | 0.1793 | - | - | - | - | - |
10.3030 | 1020 | 0.3656 | - | - | - | - | - |
10.4040 | 1030 | 0.7847 | - | - | - | - | - |
10.5051 | 1040 | 0.6572 | - | - | - | - | - |
10.6061 | 1050 | 0.4218 | - | - | - | - | - |
10.7071 | 1060 | 0.695 | - | - | - | - | - |
10.8081 | 1070 | 0.3104 | - | - | - | - | - |
10.9091 | 1080 | 1.0731 | - | - | - | - | - |
11.0 | 1089 | - | 0.4848 | 0.4940 | 0.4947 | 0.4858 | 0.4527 |
11.0101 | 1090 | 0.205 | - | - | - | - | - |
11.1111 | 1100 | 0.4321 | - | - | - | - | - |
11.2121 | 1110 | 0.3332 | - | - | - | - | - |
11.3131 | 1120 | 0.3153 | - | - | - | - | - |
11.4141 | 1130 | 0.2791 | - | - | - | - | - |
11.5152 | 1140 | 0.358 | - | - | - | - | - |
11.6162 | 1150 | 0.3905 | - | - | - | - | - |
11.7172 | 1160 | 0.257 | - | - | - | - | - |
11.8182 | 1170 | 0.2831 | - | - | - | - | - |
11.9192 | 1180 | 0.9309 | - | - | - | - | - |
12.0 | 1188 | - | 0.4918 | 0.4870 | 0.4975 | 0.4961 | 0.4674 |
12.0202 | 1190 | 0.5713 | - | - | - | - | - |
12.1212 | 1200 | 0.707 | - | - | - | - | - |
12.2222 | 1210 | 0.7112 | - | - | - | - | - |
12.3232 | 1220 | 0.6857 | - | - | - | - | - |
12.4242 | 1230 | 0.6515 | - | - | - | - | - |
12.5253 | 1240 | 0.5293 | - | - | - | - | - |
12.6263 | 1250 | 0.1141 | - | - | - | - | - |
12.7273 | 1260 | 0.2988 | - | - | - | - | - |
12.8283 | 1270 | 0.2778 | - | - | - | - | - |
12.9293 | 1280 | 0.3073 | - | - | - | - | - |
13.0 | 1287 | - | 0.4836 | 0.4824 | 0.4969 | 0.4863 | 0.4675 |
13.0303 | 1290 | 0.1673 | - | - | - | - | - |
13.1313 | 1300 | 0.2177 | - | - | - | - | - |
13.2323 | 1310 | 0.4206 | - | - | - | - | - |
13.3333 | 1320 | 0.4412 | - | - | - | - | - |
13.4343 | 1330 | 0.3181 | - | - | - | - | - |
13.5354 | 1340 | 0.2666 | - | - | - | - | - |
13.6364 | 1350 | 0.7927 | - | - | - | - | - |
13.7374 | 1360 | 0.2329 | - | - | - | - | - |
13.8384 | 1370 | 0.2652 | - | - | - | - | - |
13.9394 | 1380 | 0.4054 | - | - | - | - | - |
14.0 | 1386 | - | 0.4898 | 0.4888 | 0.4978 | 0.4968 | 0.4667 |
14.0404 | 1390 | 0.6259 | - | - | - | - | - |
14.1414 | 1400 | 0.4173 | - | - | - | - | - |
14.2424 | 1410 | 0.5599 | - | - | - | - | - |
14.3434 | 1420 | 0.434 | - | - | - | - | - |
14.4444 | 1430 | 0.3381 | - | - | - | - | - |
14.5455 | 1440 | 0.6903 | - | - | - | - | - |
14.6465 | 1450 | 0.3789 | - | - | - | - | - |
14.7475 | 1460 | 0.2936 | - | - | - | - | - |
14.8485 | 1470 | 0.2499 | - | - | - | - | - |
14.9495 | 1480 | 0.188 | - | - | - | - | - |
15.0 | 1485 | - | 0.4900 | 0.4888 | 0.4991 | 0.4968 | 0.4661 |
-1 | -1 | - | 0.4898 | 0.4888 | 0.4978 | 0.4968 | 0.4667 |
- The bold row denotes the saved checkpoint.
Framework Versions
- Python: 3.11.13
- Sentence Transformers: 4.1.0
- Transformers: 4.51.3
- PyTorch: 2.6.0+cu124
- Accelerate: 1.8.1
- Datasets: 4.0.0
- Tokenizers: 0.21.2
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
MatryoshkaLoss
@misc{kusupati2024matryoshka,
title={Matryoshka Representation Learning},
author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
year={2024},
eprint={2205.13147},
archivePrefix={arXiv},
primaryClass={cs.LG}
}
MultipleNegativesRankingLoss
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
- Downloads last month
- 45
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
🙋
Ask for provider support
Model tree for IoannisKat1/legal-bert-base-uncased-legal-matryoshka
Base model
nlpaueb/legal-bert-base-uncasedEvaluation results
- Cosine Accuracy@1 on dim 768self-reported0.429
- Cosine Accuracy@3 on dim 768self-reported0.477
- Cosine Accuracy@5 on dim 768self-reported0.510
- Cosine Accuracy@10 on dim 768self-reported0.558
- Cosine Precision@1 on dim 768self-reported0.429
- Cosine Precision@3 on dim 768self-reported0.426
- Cosine Precision@5 on dim 768self-reported0.405
- Cosine Precision@10 on dim 768self-reported0.366
- Cosine Recall@1 on dim 768self-reported0.075
- Cosine Recall@3 on dim 768self-reported0.202