Edit model card

TinyQwex-4x620M-MoE

TinyQwex-4x620M-MoE is a Mixure of Experts (MoE) made with the following models using LazyMergekit:

🌟 Buying me coffee is a direct way to show support for this project.

πŸ’» Usage

!pip install -qU transformers bitsandbytes accelerate eniops

from transformers import AutoTokenizer
import transformers
import torch

model = "Isotonic/TinyQwex-4x620M-MoE"

tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen1.5-0.5B")
pipeline = transformers.pipeline(
    "text-generation",
    model=model,
    model_kwargs={"torch_dtype": torch.bfloat16, "load_in_4bit": True},
)

messages = [{"role": "user", "content": "Explain what a Mixture of Experts is in less than 100 words."}]
prompt = pipeline.tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
print(outputs[0]["generated_text"])

🧩 Configuration

experts:
  - source_model: Qwen/Qwen1.5-0.5B
    positive_prompts:
    - "reasoning"

  - source_model: Qwen/Qwen1.5-0.5B
    positive_prompts:
    - "program"

  - source_model: Qwen/Qwen1.5-0.5B
    positive_prompts:
    - "storytelling"

  - source_model: Qwen/Qwen1.5-0.5B
    positive_prompts:
    - "Instruction following assistant"
Downloads last month
75
Safetensors
Model size
1.24B params
Tensor type
BF16
Β·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Collection including Isotonic/TinyQwex-4x620M-MoE