|
T5 Model for Formality Style Transfer. Trained on the GYAFC dataset. |
|
|
|
|
|
PyTorch model available. |
|
|
|
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM |
|
|
|
tokenizer = AutoTokenizer.from_pretrained("Isotonic/informal_to_formal") |
|
model = AutoModelForSeq2SeqLM.from_pretrained("Isotonic/informal_to_formal") |
|
|
|
sentence = "will you look into these two deals and let me know" |
|
|
|
text = "Make the following sentence Formal: " + sentence + " </s>" |
|
|
|
encoding = tokenizer.encode_plus(text,pad_to_max_length=True, return_tensors="pt") |
|
input_ids, attention_masks = encoding["input_ids"].to("cuda"), encoding["attention_mask"].to("cuda") |
|
|
|
|
|
outputs = model.generate( |
|
input_ids=input_ids, attention_mask=attention_masks, |
|
max_length=256, |
|
do_sample=True, |
|
top_k=120, |
|
top_p=0.95, |
|
early_stopping=True, |
|
num_return_sequences=5 |
|
) |
|
|
|
for output in outputs: |
|
line = tokenizer.decode(output, skip_special_tokens=True,clean_up_tokenization_spaces=True) |
|
print(line) |
|
Output: "Would you look into the two deals in question, then let me know?" |