vit-base-kidney-stone-4-Jonathan_El-Beze_-w256_1k_v1-_SUR
This model is a fine-tuned version of google/vit-base-patch16-224-in21k on the imagefolder dataset. It achieves the following results on the evaluation set:
- Loss: 0.6379
- Accuracy: 0.745
- Precision: 0.7537
- Recall: 0.745
- F1: 0.7067
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 15
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 |
---|---|---|---|---|---|---|---|
0.3911 | 0.3333 | 100 | 0.6379 | 0.745 | 0.7537 | 0.745 | 0.7067 |
0.2601 | 0.6667 | 200 | 1.0005 | 0.6842 | 0.7312 | 0.6842 | 0.6523 |
0.1349 | 1.0 | 300 | 0.6380 | 0.8533 | 0.8720 | 0.8533 | 0.8518 |
0.0601 | 1.3333 | 400 | 1.1014 | 0.7217 | 0.7753 | 0.7217 | 0.7044 |
0.2132 | 1.6667 | 500 | 0.7327 | 0.8208 | 0.8438 | 0.8208 | 0.8197 |
0.0894 | 2.0 | 600 | 1.4871 | 0.7083 | 0.7449 | 0.7083 | 0.6682 |
0.0135 | 2.3333 | 700 | 0.9952 | 0.7883 | 0.8495 | 0.7883 | 0.7799 |
0.0042 | 2.6667 | 800 | 0.6547 | 0.8683 | 0.8729 | 0.8683 | 0.8679 |
0.0037 | 3.0 | 900 | 0.7970 | 0.8367 | 0.8739 | 0.8367 | 0.8370 |
0.0578 | 3.3333 | 1000 | 0.8231 | 0.845 | 0.8641 | 0.845 | 0.8436 |
0.0019 | 3.6667 | 1100 | 0.7459 | 0.8667 | 0.8771 | 0.8667 | 0.8655 |
0.2931 | 4.0 | 1200 | 0.9539 | 0.8292 | 0.8349 | 0.8292 | 0.8275 |
0.0017 | 4.3333 | 1300 | 0.8095 | 0.8408 | 0.8607 | 0.8408 | 0.8413 |
0.0018 | 4.6667 | 1400 | 0.7471 | 0.865 | 0.8690 | 0.865 | 0.8629 |
0.0014 | 5.0 | 1500 | 1.0642 | 0.7925 | 0.8148 | 0.7925 | 0.7915 |
0.0012 | 5.3333 | 1600 | 0.8130 | 0.8333 | 0.8372 | 0.8333 | 0.8334 |
0.001 | 5.6667 | 1700 | 1.1121 | 0.8133 | 0.8222 | 0.8133 | 0.8113 |
0.001 | 6.0 | 1800 | 0.7986 | 0.8475 | 0.8528 | 0.8475 | 0.8492 |
0.0008 | 6.3333 | 1900 | 0.7908 | 0.8708 | 0.8928 | 0.8708 | 0.8718 |
0.0007 | 6.6667 | 2000 | 0.7444 | 0.8842 | 0.8981 | 0.8842 | 0.8818 |
0.0028 | 7.0 | 2100 | 0.7492 | 0.87 | 0.8749 | 0.87 | 0.8677 |
0.0007 | 7.3333 | 2200 | 1.5649 | 0.7433 | 0.8440 | 0.7433 | 0.7117 |
0.0007 | 7.6667 | 2300 | 0.8539 | 0.8492 | 0.8679 | 0.8492 | 0.8492 |
0.0015 | 8.0 | 2400 | 0.8743 | 0.835 | 0.8553 | 0.835 | 0.8342 |
0.0006 | 8.3333 | 2500 | 0.7659 | 0.8583 | 0.8608 | 0.8583 | 0.8569 |
0.0005 | 8.6667 | 2600 | 0.7448 | 0.8642 | 0.8681 | 0.8642 | 0.8627 |
0.0005 | 9.0 | 2700 | 0.7439 | 0.8683 | 0.8726 | 0.8683 | 0.8666 |
0.0004 | 9.3333 | 2800 | 0.7444 | 0.8742 | 0.8807 | 0.8742 | 0.8725 |
0.0004 | 9.6667 | 2900 | 0.7484 | 0.8725 | 0.8790 | 0.8725 | 0.8707 |
0.0003 | 10.0 | 3000 | 0.7491 | 0.8708 | 0.8781 | 0.8708 | 0.8691 |
0.0003 | 10.3333 | 3100 | 0.7509 | 0.8717 | 0.8788 | 0.8717 | 0.8699 |
0.0003 | 10.6667 | 3200 | 0.7539 | 0.875 | 0.8827 | 0.875 | 0.8732 |
0.0003 | 11.0 | 3300 | 0.7572 | 0.8775 | 0.8853 | 0.8775 | 0.8756 |
0.0003 | 11.3333 | 3400 | 0.7598 | 0.8783 | 0.8866 | 0.8783 | 0.8765 |
0.0003 | 11.6667 | 3500 | 0.7626 | 0.8792 | 0.8873 | 0.8792 | 0.8772 |
0.0003 | 12.0 | 3600 | 0.7655 | 0.8792 | 0.8873 | 0.8792 | 0.8772 |
0.0003 | 12.3333 | 3700 | 0.7682 | 0.8792 | 0.8873 | 0.8792 | 0.8772 |
0.0003 | 12.6667 | 3800 | 0.7699 | 0.88 | 0.8880 | 0.88 | 0.8780 |
0.0002 | 13.0 | 3900 | 0.7723 | 0.8808 | 0.8887 | 0.8808 | 0.8788 |
0.0003 | 13.3333 | 4000 | 0.7747 | 0.88 | 0.8881 | 0.88 | 0.8779 |
0.0003 | 13.6667 | 4100 | 0.7761 | 0.88 | 0.8881 | 0.88 | 0.8779 |
0.0002 | 14.0 | 4200 | 0.7771 | 0.88 | 0.8881 | 0.88 | 0.8779 |
0.0002 | 14.3333 | 4300 | 0.7778 | 0.88 | 0.8881 | 0.88 | 0.8779 |
0.0002 | 14.6667 | 4400 | 0.7785 | 0.88 | 0.8881 | 0.88 | 0.8779 |
0.0002 | 15.0 | 4500 | 0.7787 | 0.88 | 0.8881 | 0.88 | 0.8779 |
Framework versions
- Transformers 4.48.2
- Pytorch 2.6.0+cu126
- Datasets 3.1.0
- Tokenizers 0.21.0
- Downloads last month
- 1
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support
Model tree for Ivanrs/vit-base-kidney-stone-4-Jonathan_El-Beze_-w256_1k_v1-_SUR
Base model
google/vit-base-patch16-224-in21kEvaluation results
- Accuracy on imagefoldertest set self-reported0.745
- Precision on imagefoldertest set self-reported0.754
- Recall on imagefoldertest set self-reported0.745
- F1 on imagefoldertest set self-reported0.707