vit-base-kidney-stone-4-Michel_Daudon_-w256_1k_v1-_SUR
This model is a fine-tuned version of google/vit-base-patch16-224-in21k on the imagefolder dataset. It achieves the following results on the evaluation set:
- Loss: 0.6804
- Accuracy: 0.8136
- Precision: 0.8643
- Recall: 0.8136
- F1: 0.8124
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 15
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 |
---|---|---|---|---|---|---|---|
0.1898 | 0.3333 | 100 | 0.9163 | 0.7294 | 0.7512 | 0.7294 | 0.7288 |
0.2681 | 0.6667 | 200 | 0.6804 | 0.8136 | 0.8643 | 0.8136 | 0.8124 |
0.1036 | 1.0 | 300 | 0.9091 | 0.7939 | 0.8124 | 0.7939 | 0.7880 |
0.1047 | 1.3333 | 400 | 1.5065 | 0.6566 | 0.6964 | 0.6566 | 0.6685 |
0.0449 | 1.6667 | 500 | 0.9248 | 0.7833 | 0.7988 | 0.7833 | 0.7893 |
0.1781 | 2.0 | 600 | 1.1234 | 0.7621 | 0.7926 | 0.7621 | 0.7607 |
0.1509 | 2.3333 | 700 | 1.1867 | 0.7465 | 0.7468 | 0.7465 | 0.7396 |
0.1324 | 2.6667 | 800 | 1.3904 | 0.7433 | 0.7586 | 0.7433 | 0.7329 |
0.0037 | 3.0 | 900 | 1.3699 | 0.7408 | 0.7950 | 0.7408 | 0.7441 |
0.0025 | 3.3333 | 1000 | 1.2225 | 0.7433 | 0.7667 | 0.7433 | 0.7448 |
0.0587 | 3.6667 | 1100 | 1.4635 | 0.7244 | 0.7766 | 0.7244 | 0.7274 |
0.0422 | 4.0 | 1200 | 1.4949 | 0.7433 | 0.7599 | 0.7433 | 0.7398 |
0.0084 | 4.3333 | 1300 | 1.2363 | 0.7841 | 0.7863 | 0.7841 | 0.7788 |
0.0796 | 4.6667 | 1400 | 1.5322 | 0.7392 | 0.7473 | 0.7392 | 0.7419 |
0.003 | 5.0 | 1500 | 1.6031 | 0.7294 | 0.7752 | 0.7294 | 0.7319 |
0.0012 | 5.3333 | 1600 | 1.0992 | 0.8062 | 0.8066 | 0.8062 | 0.8056 |
0.0009 | 5.6667 | 1700 | 2.1569 | 0.6999 | 0.7144 | 0.6999 | 0.6907 |
0.0022 | 6.0 | 1800 | 2.2827 | 0.6312 | 0.6385 | 0.6312 | 0.6195 |
0.0009 | 6.3333 | 1900 | 1.8713 | 0.7089 | 0.7476 | 0.7089 | 0.6997 |
0.0012 | 6.6667 | 2000 | 1.9461 | 0.6983 | 0.6983 | 0.6983 | 0.6788 |
0.0006 | 7.0 | 2100 | 1.8889 | 0.7114 | 0.7217 | 0.7114 | 0.6998 |
0.0006 | 7.3333 | 2200 | 1.9514 | 0.6991 | 0.7212 | 0.6991 | 0.6794 |
0.0005 | 7.6667 | 2300 | 1.9619 | 0.7138 | 0.6644 | 0.7138 | 0.6726 |
0.0013 | 8.0 | 2400 | 1.7297 | 0.7490 | 0.7589 | 0.7490 | 0.7493 |
0.0005 | 8.3333 | 2500 | 2.2490 | 0.6950 | 0.7015 | 0.6950 | 0.6914 |
0.0004 | 8.6667 | 2600 | 2.2431 | 0.6975 | 0.7039 | 0.6975 | 0.6932 |
0.0009 | 9.0 | 2700 | 1.8096 | 0.7490 | 0.7593 | 0.7490 | 0.7443 |
0.0003 | 9.3333 | 2800 | 1.9490 | 0.7375 | 0.7450 | 0.7375 | 0.7353 |
0.0011 | 9.6667 | 2900 | 2.0860 | 0.7294 | 0.7239 | 0.7294 | 0.7153 |
0.0003 | 10.0 | 3000 | 1.9343 | 0.7383 | 0.7468 | 0.7383 | 0.7399 |
0.0004 | 10.3333 | 3100 | 1.9158 | 0.7457 | 0.7513 | 0.7457 | 0.7464 |
0.0003 | 10.6667 | 3200 | 1.9289 | 0.7465 | 0.7526 | 0.7465 | 0.7475 |
0.0802 | 11.0 | 3300 | 2.0591 | 0.7375 | 0.7487 | 0.7375 | 0.7404 |
0.0565 | 11.3333 | 3400 | 2.2480 | 0.7016 | 0.7854 | 0.7016 | 0.7131 |
0.0003 | 11.6667 | 3500 | 1.7115 | 0.7539 | 0.8088 | 0.7539 | 0.7572 |
0.0003 | 12.0 | 3600 | 1.9888 | 0.7195 | 0.7679 | 0.7195 | 0.7222 |
0.0003 | 12.3333 | 3700 | 2.0141 | 0.7179 | 0.7227 | 0.7179 | 0.7133 |
0.0002 | 12.6667 | 3800 | 2.0314 | 0.7089 | 0.7158 | 0.7089 | 0.7081 |
0.0002 | 13.0 | 3900 | 1.8735 | 0.7187 | 0.7291 | 0.7187 | 0.7220 |
0.0002 | 13.3333 | 4000 | 1.8854 | 0.7179 | 0.7281 | 0.7179 | 0.7210 |
0.0002 | 13.6667 | 4100 | 1.8931 | 0.7179 | 0.7281 | 0.7179 | 0.7210 |
0.0002 | 14.0 | 4200 | 1.8992 | 0.7179 | 0.7285 | 0.7179 | 0.7212 |
0.0002 | 14.3333 | 4300 | 1.9039 | 0.7179 | 0.7285 | 0.7179 | 0.7212 |
0.0002 | 14.6667 | 4400 | 1.9063 | 0.7179 | 0.7285 | 0.7179 | 0.7212 |
0.0002 | 15.0 | 4500 | 1.9073 | 0.7179 | 0.7285 | 0.7179 | 0.7212 |
Framework versions
- Transformers 4.48.2
- Pytorch 2.6.0+cu126
- Datasets 3.1.0
- Tokenizers 0.21.0
- Downloads last month
- 1
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support
Model tree for Ivanrs/vit-base-kidney-stone-4-Michel_Daudon_-w256_1k_v1-_SUR
Base model
google/vit-base-patch16-224-in21kEvaluation results
- Accuracy on imagefoldertest set self-reported0.814
- Precision on imagefoldertest set self-reported0.864
- Recall on imagefoldertest set self-reported0.814
- F1 on imagefoldertest set self-reported0.812