vit-base-kidney-stone-5-Jonathan_El-Beze_-w256_1k_v1-_MIX
This model is a fine-tuned version of google/vit-base-patch16-224-in21k on the imagefolder dataset. It achieves the following results on the evaluation set:
- Loss: 0.4482
- Accuracy: 0.8683
- Precision: 0.8788
- Recall: 0.8683
- F1: 0.8688
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 15
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 |
---|---|---|---|---|---|---|---|
0.2457 | 0.1667 | 100 | 0.5382 | 0.8258 | 0.8382 | 0.8258 | 0.8180 |
0.0854 | 0.3333 | 200 | 0.7377 | 0.7875 | 0.8422 | 0.7875 | 0.7795 |
0.1279 | 0.5 | 300 | 0.6710 | 0.7883 | 0.8568 | 0.7883 | 0.7883 |
0.1442 | 0.6667 | 400 | 0.5535 | 0.8192 | 0.8342 | 0.8192 | 0.8192 |
0.2868 | 0.8333 | 500 | 1.0679 | 0.7242 | 0.7910 | 0.7242 | 0.7163 |
0.1327 | 1.0 | 600 | 0.4482 | 0.8683 | 0.8788 | 0.8683 | 0.8688 |
0.1097 | 1.1667 | 700 | 0.8910 | 0.7983 | 0.8425 | 0.7983 | 0.7898 |
0.0725 | 1.3333 | 800 | 0.6816 | 0.8037 | 0.8375 | 0.8037 | 0.8015 |
0.0152 | 1.5 | 900 | 0.8366 | 0.8175 | 0.8466 | 0.8175 | 0.8169 |
0.0057 | 1.6667 | 1000 | 0.5298 | 0.8812 | 0.8924 | 0.8812 | 0.8810 |
0.0804 | 1.8333 | 1100 | 1.1549 | 0.7425 | 0.8162 | 0.7425 | 0.7228 |
0.0655 | 2.0 | 1200 | 0.9445 | 0.795 | 0.8350 | 0.795 | 0.7907 |
0.1261 | 2.1667 | 1300 | 0.8882 | 0.8121 | 0.8449 | 0.8121 | 0.8067 |
0.0418 | 2.3333 | 1400 | 0.6411 | 0.8638 | 0.8682 | 0.8638 | 0.8636 |
0.0809 | 2.5 | 1500 | 0.5780 | 0.8708 | 0.8811 | 0.8708 | 0.8683 |
0.1062 | 2.6667 | 1600 | 1.1595 | 0.7875 | 0.8249 | 0.7875 | 0.7623 |
0.0021 | 2.8333 | 1700 | 1.4652 | 0.7525 | 0.8050 | 0.7525 | 0.7379 |
0.0031 | 3.0 | 1800 | 1.1441 | 0.7904 | 0.8277 | 0.7904 | 0.7647 |
0.0026 | 3.1667 | 1900 | 0.6132 | 0.8479 | 0.8537 | 0.8479 | 0.8471 |
0.0011 | 3.3333 | 2000 | 0.5269 | 0.8925 | 0.8948 | 0.8925 | 0.8913 |
0.0014 | 3.5 | 2100 | 0.8908 | 0.7808 | 0.8294 | 0.7808 | 0.7723 |
0.0013 | 3.6667 | 2200 | 0.8869 | 0.8075 | 0.8466 | 0.8075 | 0.8101 |
0.0007 | 3.8333 | 2300 | 0.6948 | 0.8667 | 0.8817 | 0.8667 | 0.8662 |
0.0824 | 4.0 | 2400 | 0.4991 | 0.8929 | 0.8962 | 0.8929 | 0.8934 |
0.0021 | 4.1667 | 2500 | 0.5147 | 0.9038 | 0.9116 | 0.9038 | 0.9025 |
0.0006 | 4.3333 | 2600 | 0.5748 | 0.8967 | 0.9043 | 0.8967 | 0.8970 |
0.0005 | 4.5 | 2700 | 0.5797 | 0.8962 | 0.9035 | 0.8962 | 0.8966 |
0.0006 | 4.6667 | 2800 | 0.8573 | 0.855 | 0.8741 | 0.855 | 0.8534 |
0.0006 | 4.8333 | 2900 | 0.7548 | 0.8446 | 0.8617 | 0.8446 | 0.8415 |
0.0019 | 5.0 | 3000 | 0.6473 | 0.8733 | 0.8850 | 0.8733 | 0.8714 |
0.0469 | 5.1667 | 3100 | 0.8790 | 0.8258 | 0.8368 | 0.8258 | 0.8274 |
0.0271 | 5.3333 | 3200 | 1.6532 | 0.7525 | 0.8328 | 0.7525 | 0.7430 |
0.0005 | 5.5 | 3300 | 0.7739 | 0.8654 | 0.8743 | 0.8654 | 0.8660 |
0.1697 | 5.6667 | 3400 | 0.7311 | 0.8592 | 0.8816 | 0.8592 | 0.8612 |
0.0162 | 5.8333 | 3500 | 0.7819 | 0.8621 | 0.8678 | 0.8621 | 0.8620 |
0.0039 | 6.0 | 3600 | 1.1462 | 0.8092 | 0.8282 | 0.8092 | 0.8073 |
0.0005 | 6.1667 | 3700 | 0.6625 | 0.8692 | 0.8750 | 0.8692 | 0.8699 |
0.0022 | 6.3333 | 3800 | 1.1395 | 0.8079 | 0.8245 | 0.8079 | 0.7988 |
0.0039 | 6.5 | 3900 | 0.5258 | 0.9104 | 0.9145 | 0.9104 | 0.9111 |
0.0003 | 6.6667 | 4000 | 0.8170 | 0.8438 | 0.8598 | 0.8438 | 0.8445 |
0.0005 | 6.8333 | 4100 | 0.6582 | 0.8862 | 0.8906 | 0.8862 | 0.8847 |
0.0003 | 7.0 | 4200 | 0.8093 | 0.8571 | 0.8707 | 0.8571 | 0.8585 |
0.0002 | 7.1667 | 4300 | 0.7803 | 0.8633 | 0.8744 | 0.8633 | 0.8645 |
0.0002 | 7.3333 | 4400 | 0.7809 | 0.865 | 0.8767 | 0.865 | 0.8660 |
0.0002 | 7.5 | 4500 | 0.7817 | 0.8671 | 0.8788 | 0.8671 | 0.8680 |
0.0002 | 7.6667 | 4600 | 0.7804 | 0.8683 | 0.8792 | 0.8683 | 0.8692 |
0.0001 | 7.8333 | 4700 | 0.7560 | 0.8762 | 0.8840 | 0.8762 | 0.8766 |
0.0002 | 8.0 | 4800 | 0.7634 | 0.8767 | 0.8848 | 0.8767 | 0.8771 |
0.0001 | 8.1667 | 4900 | 0.7603 | 0.8792 | 0.8866 | 0.8792 | 0.8794 |
0.0001 | 8.3333 | 5000 | 0.7596 | 0.8792 | 0.8864 | 0.8792 | 0.8794 |
0.0001 | 8.5 | 5100 | 0.7636 | 0.8804 | 0.8875 | 0.8804 | 0.8806 |
0.0001 | 8.6667 | 5200 | 0.7681 | 0.8792 | 0.8869 | 0.8792 | 0.8794 |
0.0001 | 8.8333 | 5300 | 0.7720 | 0.8796 | 0.8877 | 0.8796 | 0.8799 |
0.0001 | 9.0 | 5400 | 0.7743 | 0.8796 | 0.8876 | 0.8796 | 0.8798 |
0.0001 | 9.1667 | 5500 | 0.7771 | 0.88 | 0.8880 | 0.88 | 0.8802 |
0.0001 | 9.3333 | 5600 | 0.7801 | 0.8804 | 0.8883 | 0.8804 | 0.8806 |
0.0001 | 9.5 | 5700 | 0.7823 | 0.8804 | 0.8883 | 0.8804 | 0.8806 |
0.0001 | 9.6667 | 5800 | 0.7851 | 0.8808 | 0.8885 | 0.8808 | 0.8810 |
0.0001 | 9.8333 | 5900 | 0.7873 | 0.8808 | 0.8885 | 0.8808 | 0.8810 |
0.0001 | 10.0 | 6000 | 0.7907 | 0.8812 | 0.8890 | 0.8812 | 0.8814 |
0.0001 | 10.1667 | 6100 | 0.7934 | 0.8817 | 0.8893 | 0.8817 | 0.8818 |
0.0001 | 10.3333 | 6200 | 0.7968 | 0.8817 | 0.8896 | 0.8817 | 0.8818 |
0.0001 | 10.5 | 6300 | 0.8003 | 0.8817 | 0.8896 | 0.8817 | 0.8818 |
0.0001 | 10.6667 | 6400 | 0.8027 | 0.8817 | 0.8896 | 0.8817 | 0.8818 |
0.0001 | 10.8333 | 6500 | 0.8035 | 0.8812 | 0.8894 | 0.8812 | 0.8815 |
0.0001 | 11.0 | 6600 | 0.8049 | 0.8812 | 0.8894 | 0.8812 | 0.8815 |
0.0001 | 11.1667 | 6700 | 0.8070 | 0.8812 | 0.8894 | 0.8812 | 0.8815 |
0.0001 | 11.3333 | 6800 | 0.8091 | 0.8812 | 0.8894 | 0.8812 | 0.8815 |
0.0001 | 11.5 | 6900 | 0.8124 | 0.8817 | 0.8897 | 0.8817 | 0.8818 |
0.0001 | 11.6667 | 7000 | 0.8147 | 0.8817 | 0.8897 | 0.8817 | 0.8818 |
0.0001 | 11.8333 | 7100 | 0.8163 | 0.8821 | 0.8899 | 0.8821 | 0.8822 |
0.0001 | 12.0 | 7200 | 0.8181 | 0.8829 | 0.8908 | 0.8829 | 0.8830 |
0.0 | 12.1667 | 7300 | 0.8204 | 0.8833 | 0.8911 | 0.8833 | 0.8834 |
0.0 | 12.3333 | 7400 | 0.8224 | 0.8833 | 0.8911 | 0.8833 | 0.8834 |
0.0 | 12.5 | 7500 | 0.8246 | 0.8825 | 0.8902 | 0.8825 | 0.8826 |
0.0 | 12.6667 | 7600 | 0.8267 | 0.8821 | 0.8898 | 0.8821 | 0.8821 |
0.0 | 12.8333 | 7700 | 0.8280 | 0.8821 | 0.8898 | 0.8821 | 0.8821 |
0.0 | 13.0 | 7800 | 0.8290 | 0.8825 | 0.8902 | 0.8825 | 0.8826 |
0.0 | 13.1667 | 7900 | 0.8309 | 0.8821 | 0.8898 | 0.8821 | 0.8821 |
0.0 | 13.3333 | 8000 | 0.8328 | 0.8821 | 0.8898 | 0.8821 | 0.8821 |
0.0 | 13.5 | 8100 | 0.8340 | 0.8825 | 0.8902 | 0.8825 | 0.8826 |
0.0 | 13.6667 | 8200 | 0.8348 | 0.8821 | 0.8898 | 0.8821 | 0.8821 |
0.0 | 13.8333 | 8300 | 0.8360 | 0.8821 | 0.8898 | 0.8821 | 0.8821 |
0.0 | 14.0 | 8400 | 0.8369 | 0.8825 | 0.8902 | 0.8825 | 0.8826 |
0.0 | 14.1667 | 8500 | 0.8379 | 0.8821 | 0.8898 | 0.8821 | 0.8821 |
0.0 | 14.3333 | 8600 | 0.8386 | 0.8821 | 0.8898 | 0.8821 | 0.8821 |
0.0 | 14.5 | 8700 | 0.8390 | 0.8829 | 0.8905 | 0.8829 | 0.8830 |
0.0 | 14.6667 | 8800 | 0.8397 | 0.8825 | 0.8901 | 0.8825 | 0.8825 |
0.0 | 14.8333 | 8900 | 0.8401 | 0.8825 | 0.8901 | 0.8825 | 0.8825 |
0.0 | 15.0 | 9000 | 0.8401 | 0.8825 | 0.8901 | 0.8825 | 0.8825 |
Framework versions
- Transformers 4.48.2
- Pytorch 2.6.0+cu126
- Datasets 3.1.0
- Tokenizers 0.21.0
- Downloads last month
- 0
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support
Model tree for Ivanrs/vit-base-kidney-stone-5-Jonathan_El-Beze_-w256_1k_v1-_MIX
Base model
google/vit-base-patch16-224-in21kEvaluation results
- Accuracy on imagefoldertest set self-reported0.868
- Precision on imagefoldertest set self-reported0.879
- Recall on imagefoldertest set self-reported0.868
- F1 on imagefoldertest set self-reported0.869