vit-base-kidney-stone-5-Jonathan_El-Beze_-w256_1k_v1-_MIX

This model is a fine-tuned version of google/vit-base-patch16-224-in21k on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 0.4482
  • Accuracy: 0.8683
  • Precision: 0.8788
  • Recall: 0.8683
  • F1: 0.8688

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0002
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • num_epochs: 15
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Accuracy Precision Recall F1
0.2457 0.1667 100 0.5382 0.8258 0.8382 0.8258 0.8180
0.0854 0.3333 200 0.7377 0.7875 0.8422 0.7875 0.7795
0.1279 0.5 300 0.6710 0.7883 0.8568 0.7883 0.7883
0.1442 0.6667 400 0.5535 0.8192 0.8342 0.8192 0.8192
0.2868 0.8333 500 1.0679 0.7242 0.7910 0.7242 0.7163
0.1327 1.0 600 0.4482 0.8683 0.8788 0.8683 0.8688
0.1097 1.1667 700 0.8910 0.7983 0.8425 0.7983 0.7898
0.0725 1.3333 800 0.6816 0.8037 0.8375 0.8037 0.8015
0.0152 1.5 900 0.8366 0.8175 0.8466 0.8175 0.8169
0.0057 1.6667 1000 0.5298 0.8812 0.8924 0.8812 0.8810
0.0804 1.8333 1100 1.1549 0.7425 0.8162 0.7425 0.7228
0.0655 2.0 1200 0.9445 0.795 0.8350 0.795 0.7907
0.1261 2.1667 1300 0.8882 0.8121 0.8449 0.8121 0.8067
0.0418 2.3333 1400 0.6411 0.8638 0.8682 0.8638 0.8636
0.0809 2.5 1500 0.5780 0.8708 0.8811 0.8708 0.8683
0.1062 2.6667 1600 1.1595 0.7875 0.8249 0.7875 0.7623
0.0021 2.8333 1700 1.4652 0.7525 0.8050 0.7525 0.7379
0.0031 3.0 1800 1.1441 0.7904 0.8277 0.7904 0.7647
0.0026 3.1667 1900 0.6132 0.8479 0.8537 0.8479 0.8471
0.0011 3.3333 2000 0.5269 0.8925 0.8948 0.8925 0.8913
0.0014 3.5 2100 0.8908 0.7808 0.8294 0.7808 0.7723
0.0013 3.6667 2200 0.8869 0.8075 0.8466 0.8075 0.8101
0.0007 3.8333 2300 0.6948 0.8667 0.8817 0.8667 0.8662
0.0824 4.0 2400 0.4991 0.8929 0.8962 0.8929 0.8934
0.0021 4.1667 2500 0.5147 0.9038 0.9116 0.9038 0.9025
0.0006 4.3333 2600 0.5748 0.8967 0.9043 0.8967 0.8970
0.0005 4.5 2700 0.5797 0.8962 0.9035 0.8962 0.8966
0.0006 4.6667 2800 0.8573 0.855 0.8741 0.855 0.8534
0.0006 4.8333 2900 0.7548 0.8446 0.8617 0.8446 0.8415
0.0019 5.0 3000 0.6473 0.8733 0.8850 0.8733 0.8714
0.0469 5.1667 3100 0.8790 0.8258 0.8368 0.8258 0.8274
0.0271 5.3333 3200 1.6532 0.7525 0.8328 0.7525 0.7430
0.0005 5.5 3300 0.7739 0.8654 0.8743 0.8654 0.8660
0.1697 5.6667 3400 0.7311 0.8592 0.8816 0.8592 0.8612
0.0162 5.8333 3500 0.7819 0.8621 0.8678 0.8621 0.8620
0.0039 6.0 3600 1.1462 0.8092 0.8282 0.8092 0.8073
0.0005 6.1667 3700 0.6625 0.8692 0.8750 0.8692 0.8699
0.0022 6.3333 3800 1.1395 0.8079 0.8245 0.8079 0.7988
0.0039 6.5 3900 0.5258 0.9104 0.9145 0.9104 0.9111
0.0003 6.6667 4000 0.8170 0.8438 0.8598 0.8438 0.8445
0.0005 6.8333 4100 0.6582 0.8862 0.8906 0.8862 0.8847
0.0003 7.0 4200 0.8093 0.8571 0.8707 0.8571 0.8585
0.0002 7.1667 4300 0.7803 0.8633 0.8744 0.8633 0.8645
0.0002 7.3333 4400 0.7809 0.865 0.8767 0.865 0.8660
0.0002 7.5 4500 0.7817 0.8671 0.8788 0.8671 0.8680
0.0002 7.6667 4600 0.7804 0.8683 0.8792 0.8683 0.8692
0.0001 7.8333 4700 0.7560 0.8762 0.8840 0.8762 0.8766
0.0002 8.0 4800 0.7634 0.8767 0.8848 0.8767 0.8771
0.0001 8.1667 4900 0.7603 0.8792 0.8866 0.8792 0.8794
0.0001 8.3333 5000 0.7596 0.8792 0.8864 0.8792 0.8794
0.0001 8.5 5100 0.7636 0.8804 0.8875 0.8804 0.8806
0.0001 8.6667 5200 0.7681 0.8792 0.8869 0.8792 0.8794
0.0001 8.8333 5300 0.7720 0.8796 0.8877 0.8796 0.8799
0.0001 9.0 5400 0.7743 0.8796 0.8876 0.8796 0.8798
0.0001 9.1667 5500 0.7771 0.88 0.8880 0.88 0.8802
0.0001 9.3333 5600 0.7801 0.8804 0.8883 0.8804 0.8806
0.0001 9.5 5700 0.7823 0.8804 0.8883 0.8804 0.8806
0.0001 9.6667 5800 0.7851 0.8808 0.8885 0.8808 0.8810
0.0001 9.8333 5900 0.7873 0.8808 0.8885 0.8808 0.8810
0.0001 10.0 6000 0.7907 0.8812 0.8890 0.8812 0.8814
0.0001 10.1667 6100 0.7934 0.8817 0.8893 0.8817 0.8818
0.0001 10.3333 6200 0.7968 0.8817 0.8896 0.8817 0.8818
0.0001 10.5 6300 0.8003 0.8817 0.8896 0.8817 0.8818
0.0001 10.6667 6400 0.8027 0.8817 0.8896 0.8817 0.8818
0.0001 10.8333 6500 0.8035 0.8812 0.8894 0.8812 0.8815
0.0001 11.0 6600 0.8049 0.8812 0.8894 0.8812 0.8815
0.0001 11.1667 6700 0.8070 0.8812 0.8894 0.8812 0.8815
0.0001 11.3333 6800 0.8091 0.8812 0.8894 0.8812 0.8815
0.0001 11.5 6900 0.8124 0.8817 0.8897 0.8817 0.8818
0.0001 11.6667 7000 0.8147 0.8817 0.8897 0.8817 0.8818
0.0001 11.8333 7100 0.8163 0.8821 0.8899 0.8821 0.8822
0.0001 12.0 7200 0.8181 0.8829 0.8908 0.8829 0.8830
0.0 12.1667 7300 0.8204 0.8833 0.8911 0.8833 0.8834
0.0 12.3333 7400 0.8224 0.8833 0.8911 0.8833 0.8834
0.0 12.5 7500 0.8246 0.8825 0.8902 0.8825 0.8826
0.0 12.6667 7600 0.8267 0.8821 0.8898 0.8821 0.8821
0.0 12.8333 7700 0.8280 0.8821 0.8898 0.8821 0.8821
0.0 13.0 7800 0.8290 0.8825 0.8902 0.8825 0.8826
0.0 13.1667 7900 0.8309 0.8821 0.8898 0.8821 0.8821
0.0 13.3333 8000 0.8328 0.8821 0.8898 0.8821 0.8821
0.0 13.5 8100 0.8340 0.8825 0.8902 0.8825 0.8826
0.0 13.6667 8200 0.8348 0.8821 0.8898 0.8821 0.8821
0.0 13.8333 8300 0.8360 0.8821 0.8898 0.8821 0.8821
0.0 14.0 8400 0.8369 0.8825 0.8902 0.8825 0.8826
0.0 14.1667 8500 0.8379 0.8821 0.8898 0.8821 0.8821
0.0 14.3333 8600 0.8386 0.8821 0.8898 0.8821 0.8821
0.0 14.5 8700 0.8390 0.8829 0.8905 0.8829 0.8830
0.0 14.6667 8800 0.8397 0.8825 0.8901 0.8825 0.8825
0.0 14.8333 8900 0.8401 0.8825 0.8901 0.8825 0.8825
0.0 15.0 9000 0.8401 0.8825 0.8901 0.8825 0.8825

Framework versions

  • Transformers 4.48.2
  • Pytorch 2.6.0+cu126
  • Datasets 3.1.0
  • Tokenizers 0.21.0
Downloads last month
0
Safetensors
Model size
85.8M params
Tensor type
F32
ยท
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Model tree for Ivanrs/vit-base-kidney-stone-5-Jonathan_El-Beze_-w256_1k_v1-_MIX

Finetuned
(2009)
this model

Evaluation results