vit-base-kidney-stone-5-Jonathan_El-Beze_-w256_1k_v1-_SEC
This model is a fine-tuned version of google/vit-base-patch16-224-in21k on the imagefolder dataset. It achieves the following results on the evaluation set:
- Loss: 0.2317
- Accuracy: 0.9583
- Precision: 0.9611
- Recall: 0.9583
- F1: 0.9575
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 15
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 |
---|---|---|---|---|---|---|---|
0.1048 | 0.3333 | 100 | 0.2766 | 0.9125 | 0.9266 | 0.9125 | 0.9148 |
0.1694 | 0.6667 | 200 | 0.5766 | 0.855 | 0.8878 | 0.855 | 0.8515 |
0.1116 | 1.0 | 300 | 0.8084 | 0.8233 | 0.8730 | 0.8233 | 0.8067 |
0.0071 | 1.3333 | 400 | 0.6568 | 0.8783 | 0.9098 | 0.8783 | 0.8717 |
0.0606 | 1.6667 | 500 | 0.6522 | 0.8767 | 0.9201 | 0.8767 | 0.8796 |
0.0069 | 2.0 | 600 | 1.3007 | 0.7383 | 0.7651 | 0.7383 | 0.7228 |
0.003 | 2.3333 | 700 | 0.3122 | 0.925 | 0.9287 | 0.925 | 0.9253 |
0.002 | 2.6667 | 800 | 0.5233 | 0.89 | 0.9141 | 0.89 | 0.8863 |
0.0023 | 3.0 | 900 | 0.7763 | 0.8567 | 0.8853 | 0.8567 | 0.8499 |
0.1048 | 3.3333 | 1000 | 0.5440 | 0.8983 | 0.9024 | 0.8983 | 0.8971 |
0.0023 | 3.6667 | 1100 | 0.3234 | 0.9367 | 0.9471 | 0.9367 | 0.9366 |
0.0943 | 4.0 | 1200 | 0.9164 | 0.84 | 0.9062 | 0.84 | 0.8402 |
0.0858 | 4.3333 | 1300 | 0.2317 | 0.9583 | 0.9611 | 0.9583 | 0.9575 |
0.0011 | 4.6667 | 1400 | 1.0192 | 0.82 | 0.8376 | 0.82 | 0.8045 |
0.0009 | 5.0 | 1500 | 0.5853 | 0.8725 | 0.9008 | 0.8725 | 0.8718 |
0.0007 | 5.3333 | 1600 | 0.5612 | 0.8842 | 0.9086 | 0.8842 | 0.8841 |
0.0006 | 5.6667 | 1700 | 0.5591 | 0.8842 | 0.9085 | 0.8842 | 0.8842 |
0.0006 | 6.0 | 1800 | 0.5744 | 0.8833 | 0.9085 | 0.8833 | 0.8832 |
0.0005 | 6.3333 | 1900 | 0.5831 | 0.8817 | 0.9065 | 0.8817 | 0.8816 |
0.0005 | 6.6667 | 2000 | 0.5819 | 0.8842 | 0.9075 | 0.8842 | 0.8842 |
0.0004 | 7.0 | 2100 | 0.5861 | 0.8842 | 0.9076 | 0.8842 | 0.8843 |
0.0004 | 7.3333 | 2200 | 0.5866 | 0.8867 | 0.9092 | 0.8867 | 0.8869 |
0.0004 | 7.6667 | 2300 | 0.5911 | 0.8867 | 0.9092 | 0.8867 | 0.8869 |
0.0004 | 8.0 | 2400 | 0.5931 | 0.8867 | 0.9092 | 0.8867 | 0.8869 |
0.0003 | 8.3333 | 2500 | 0.5992 | 0.8867 | 0.9092 | 0.8867 | 0.8869 |
0.0003 | 8.6667 | 2600 | 0.5975 | 0.8892 | 0.9108 | 0.8892 | 0.8895 |
0.0003 | 9.0 | 2700 | 0.5978 | 0.89 | 0.9112 | 0.89 | 0.8904 |
0.0003 | 9.3333 | 2800 | 0.6015 | 0.89 | 0.9115 | 0.89 | 0.8905 |
0.0003 | 9.6667 | 2900 | 0.6045 | 0.89 | 0.9115 | 0.89 | 0.8905 |
0.0002 | 10.0 | 3000 | 0.6030 | 0.89 | 0.9115 | 0.89 | 0.8905 |
0.0002 | 10.3333 | 3100 | 0.6025 | 0.8917 | 0.9124 | 0.8917 | 0.8922 |
0.0002 | 10.6667 | 3200 | 0.6038 | 0.8917 | 0.9124 | 0.8917 | 0.8922 |
0.0002 | 11.0 | 3300 | 0.6075 | 0.8908 | 0.9112 | 0.8908 | 0.8913 |
0.0002 | 11.3333 | 3400 | 0.6090 | 0.8917 | 0.9116 | 0.8917 | 0.8922 |
0.0002 | 11.6667 | 3500 | 0.6109 | 0.8917 | 0.9116 | 0.8917 | 0.8923 |
0.0002 | 12.0 | 3600 | 0.6111 | 0.8917 | 0.9116 | 0.8917 | 0.8923 |
0.0002 | 12.3333 | 3700 | 0.6121 | 0.8917 | 0.9116 | 0.8917 | 0.8923 |
0.0002 | 12.6667 | 3800 | 0.6126 | 0.8917 | 0.9116 | 0.8917 | 0.8923 |
0.0002 | 13.0 | 3900 | 0.6135 | 0.8917 | 0.9119 | 0.8917 | 0.8923 |
0.0002 | 13.3333 | 4000 | 0.6142 | 0.8917 | 0.9119 | 0.8917 | 0.8923 |
0.0002 | 13.6667 | 4100 | 0.6154 | 0.8917 | 0.9119 | 0.8917 | 0.8923 |
0.0002 | 14.0 | 4200 | 0.6156 | 0.8917 | 0.9119 | 0.8917 | 0.8923 |
0.0002 | 14.3333 | 4300 | 0.6159 | 0.8917 | 0.9119 | 0.8917 | 0.8923 |
0.0002 | 14.6667 | 4400 | 0.6162 | 0.8917 | 0.9119 | 0.8917 | 0.8923 |
0.0002 | 15.0 | 4500 | 0.6163 | 0.8917 | 0.9119 | 0.8917 | 0.8923 |
Framework versions
- Transformers 4.48.2
- Pytorch 2.6.0+cu126
- Datasets 3.1.0
- Tokenizers 0.21.0
- Downloads last month
- 1
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support
Model tree for Ivanrs/vit-base-kidney-stone-5-Jonathan_El-Beze_-w256_1k_v1-_SEC
Base model
google/vit-base-patch16-224-in21kEvaluation results
- Accuracy on imagefoldertest set self-reported0.958
- Precision on imagefoldertest set self-reported0.961
- Recall on imagefoldertest set self-reported0.958
- F1 on imagefoldertest set self-reported0.957